

Therapeutic approaches of Metastatic Breast Cancer: TNBC

Ahmad Awada MD, PhD Head of the Oncology Medicine Department Institut Jules Bordet - Université Libre de Bruxelles Brussels - Belgium

PGMO – March 13, 2021

Disclosures

Advisory role, research grants to my Institute, Speaker fees:

Roche, Lilly, Amgen, EISAI, BMS, Pfizer, Novartis, MSD, Genomic Health, Ipsen, AstraZeneca, Bayer, Leo Pharma, Merck, Daiichi

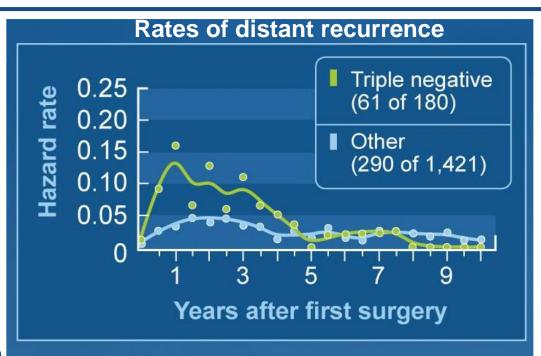
- A 43 year old patient => surgery + LND
- AP: IDC (3cm), 3 LN+, Grade 3, ER 0/8 PgR 0/8 and HER2-, Ki67 40%
- Adjuvant therapy: EC dose dense (q2w) + 12 weekly paclitaxel
- No germline BRCA mutation performed
- 16 months later, a CT showed one lung lesion (2cm) and 2 lesions in the
- liver. CA 15-3: 228. CTC: 123
- Biopsy of one liver metastasis performed: TNBC

What do you propose?

- 1. To perform brain MRI
- 2. Gene profiling of the liver biopsy
- 3. NGS of the liver biopsy
- 4. PDL-1 expression
- 5. Germline BRCA mutation
- 6. All
- 7. 3+4+5
- 8. 4 + 5

TNBC

Should therapeutic algorithm be based on Clinical or molecular subtyping ?


TNBC: Clinical Characteristics

* Risk Factors:

- Young
- BRCA1 carriers (80%)

* Relapse pattern:

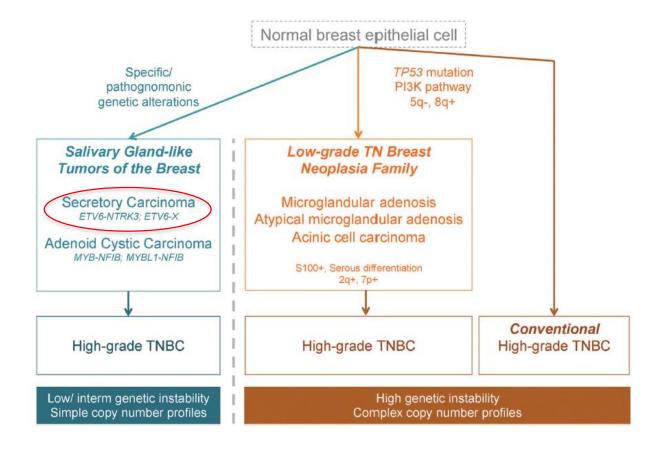
- Higher risk
- Early timing
- Sites differ from luminal:
 - e.g., CNS 46% over time

	Ν	Bone	Soft Tissue	Viscera
TNBC	79	13%	13%	74%
ER+	123	39%	7%	54%
HER2+	78	7%	12%	81%

1. Lin NU. *Cancer.* 2008;113(10):2638-2645. 2. Dent R. *Clin Cancer Res.* 2007;13(15 Pt1):4429-4434. 3. Liedtke C. J Clin Oncol. 2008;26(8):1275-1281.

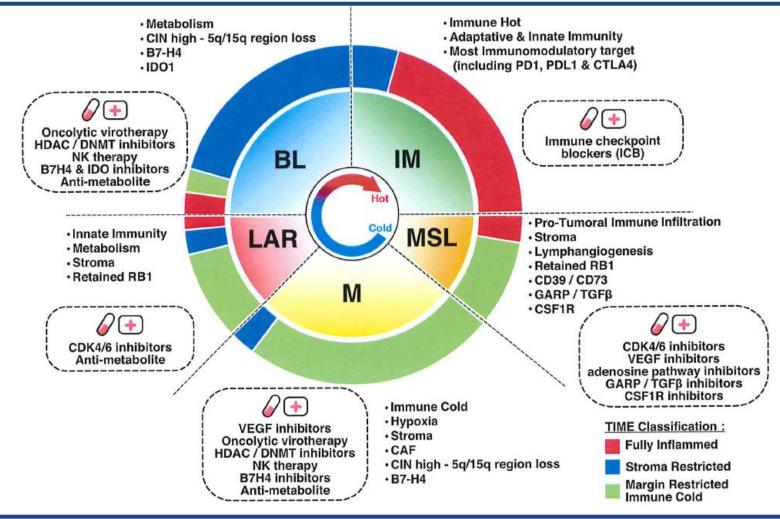
Poor outcome of a "triple negative" breast cancer clinical case

ER – PgR – HER-2 – Ki67 80%

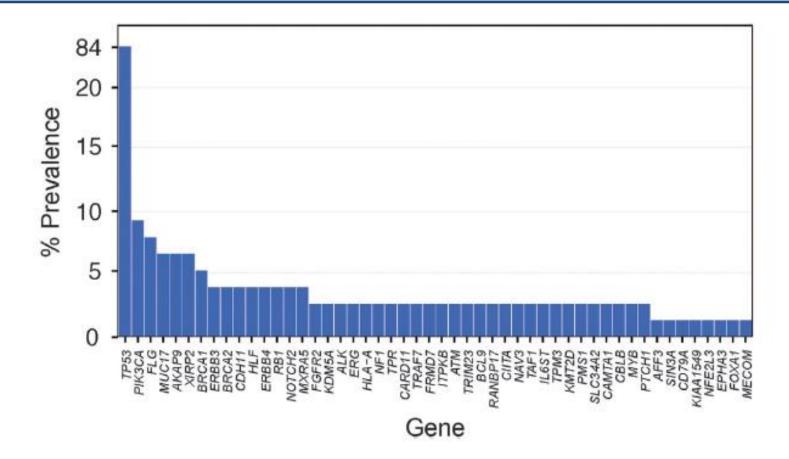

Progressive disease in spite of:

- FEC x 6
- Weekly paclitaxel
- Kinesin inhibitor
- Capecitabine

Angiogenic and inflammatory pattern of the local recurrence !!!


Hypothetical model of potential evolutionary paths of TNBCs

F. Pareja et al, *Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants,* NPJ Breast Cancer (2016)


TNBC : Gene profiling, targets, pathways and potential modulators

Somatic mutations affecting cancer genes in TNBCs

INSTITUT JULES BORDET INSTITUUT

The Cancer Genome Atlas (TCGA)

If germline BRCA mutation and PD-L1 were both negative, what do you propose as therapy?

- 1. Taxane + bevacizumab
- 2. Chemo + CPIs
- 3. Capecitabine
- 4. Platinum-based therapy
- 5. Eribuline

Selected anticancer agents (cytotoxics, biologicals) studied clinically in TNBC

- Anthracyclines and taxanes
- Platinum compounds
- Antimetabolites (e.g., capecitabine, ...)
- Eribulin
- Antibody drugs conjugates (Emerging active therapy)
- PARP inhibitors
- Bevacizumab
- Checkpoints inhibitors (e.g., atezolizumab, pembrolizumab...)
- Androgen receptor modulators
- Anti-AKT/PI3K?

T/FAC Neoadjuvant Response by PAM50 subtype

(12 weeks of paclitaxel followed by 4 cycles of FAC)

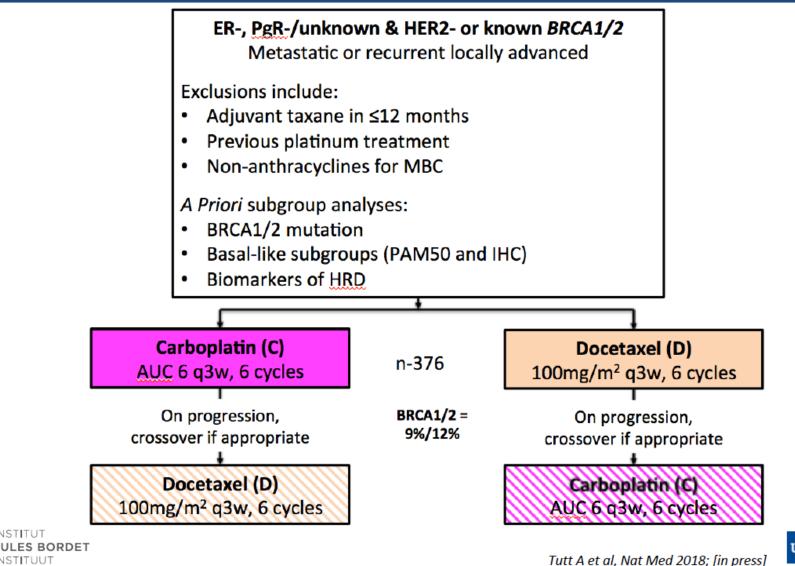
the overall pCR rate was 22%

Classification	RD	pCR
Basal-like	11 (41%)	16 (59%)
HER2-enriched	17 (59%)	12 (41%)
LumA	36 (100%)	0(0%)
LumB	22 (82%)	5 (18%)
Normal-like	13 (93%)	1(7%)
Triple Negative	13 (50%)	13 (50%)
Any Positive	82 (80%)	20 (20%)
Triple Negative/Basal	6 (35%)	11 (65%)
Triple Negative/Non-Basal	7 (78%)	2 (22%)
Non-Triple Negative/Basal	4 (50%)	4 (50%)
Non-Triple Negative/Non-Basal	78 (83%)	16 (17%)

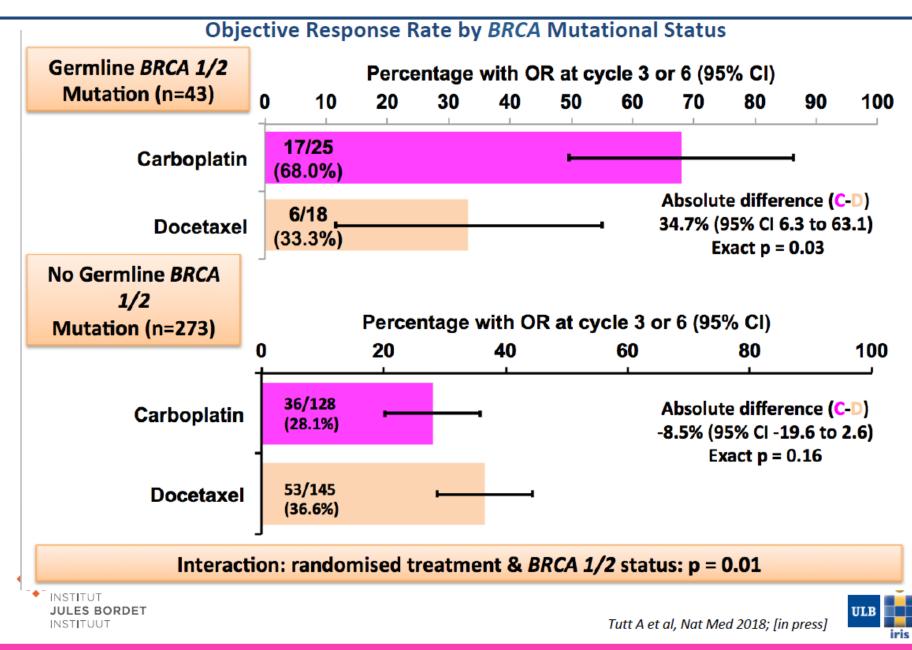
Parker et al. J Clin Oncol; 27:1160-1167 2009

Neoadjuvant setting : Platinum Sensitivity in BRCA1+/TNBC

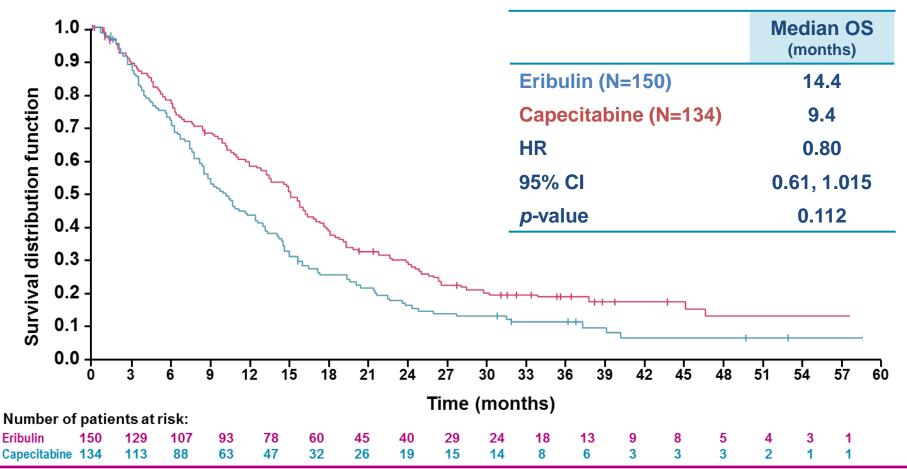
Trial	Pop'n	Regimen	Ν	pCR
Ryan	Sporadic TNBC	CDDP 75mg/m2 x4 + bevacizumab 15 mg/kg q3wk x3	51	8 (16%)
Silver	Sporadic TNBC	CDDP 75mg/m ² x4	26	4 (15%)
Byrski	BRCA1+	Non-platinum	90	14 (16%)
Byrski	BRCA1+	CDDP 75mg/m ² x4	12	10 (83%)
Gronwald	BRCA1+	CDDP 75mg/m ² x4	25	18(72%)


INSTITUT JULES BORDET INSTITUUT

Byrski, JCO 2009; Gronwald, ASCO 2009, Silver JCO 2009: Baselga ESMO 2010; Isakoff SABCS 2010


First-Line Platinum-based Chemotherapy

TNT Trial: CRUK/07/012



INSTITUUT

First-Line Platinum-based Chemotherapy

Eribulin 301 study : Overall survival in TNBC patients

Cl=confidence interval

Pre-specified exploratory sub groups

1) Twelves C et al. Breast Cancer: Basic and Clinical Research 2016

Bevacizumab for Metastatic TNBC

Trial / Arm	Median PFS (mo) in TNBC Subset
E2100	
Paclitaxel (n=110)	5.3
Paclitaxel + bev (n=122)	10.6
AVADO	
Docetaxel + placebo (n=52)	5.4
Docetaxel + bev 15 mg/kg (n=58)	8.2
RIBBON-1	
Taxane/anthracycline + placebo (n=46)	6.2
Taxane/anthracycline + bev (n=96)	6.5
Capecitabine + placebo (n=50)	4.2
Capecitabine + bev (n=87)	6.1
ATHENA	
Taxane-based regimen + bev (n=577)	7.2*

OS in TNBC population showed no difference between bev and non-bev treated groups (HR=0.96; 95% CI: 0.79-1.16)

Thomssen, et al. SABCS 2009. Abstract 6093. O'Shaughnessy J, et al. SABCS 2009. Abstract 207.

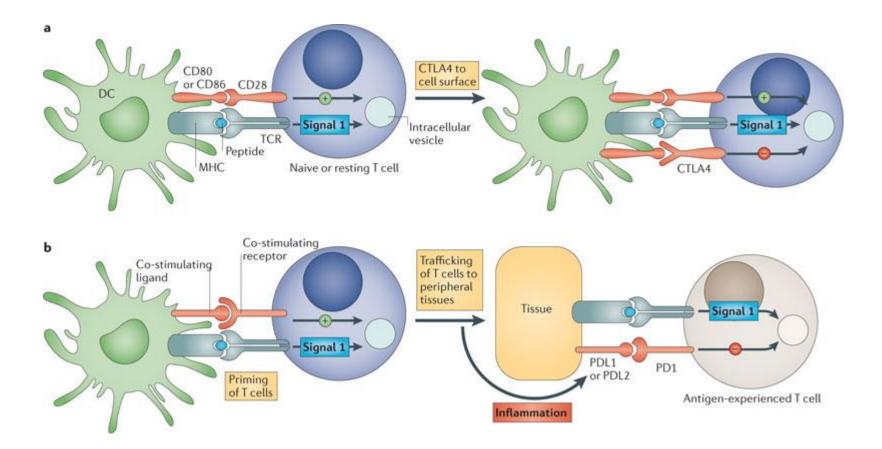
The patient received 5 months of taxane + bevacizumab. A CT scan showed one remaining lesion of the liver. What do you propose next?

- 1. Stop treatment and FU
- 2. Stop taxane and maintenance bevacizumab
- 3. Local therapy of the remaining lesion (oligometastatic disease)
- 4. Biopsy of the remaining lesion for biology analysis
- 5. 2 + 3
- 6. 2 + 3 + 4

Oligometastatic Disease: Investigational Approach in MBC

Oligosensitive disease ≠ Oligoprogressive disease

Pied de page à compléter


If germline BRCA mutation was negative and <u>PD-L1 positive</u>, what do you propose?

- 1. Chemo + bevacizumab
- 2. Chemo + CPIs
- 3. Platinum-based therapy
- 4. Eribuline

Immune Checkpoints in Cancer

CTL4 immune checkpoint regulates initial T-cell response to antigen, whereas PD1 pathway regulates inflammatory responses in peripheral tissues by effector T cells

Chemo ± CPIs in metastatic TNBC: A summary

	VIRTUAL ESMOCONGRESS	MUNICH STORE	ASCO20 Virtual
PDL1+ subsets	IMpassion 131	IMpassion 130	KEYNOTE 355
N	292	369	323 (2:1)
Minimum DFI	12m	12m	6m (20% < 12m)
> 3 involved sites	15%	20%	43% (<i>≥</i> 3)
Chemo backbone	paclitaxel	nab paclitaxel	nab paclitaxel, paclitaxel, gem/carbo
Prior chemo for EBC	52% taxane	51% taxane	22% prior same class
No prior chemo	29% de novo	35% chemo-naive	32% de novo
PDL1+ rate	45% (SP142, IC≥1%)	41% (SP142, IC≥1%)	38% (22C3, CPS≥10)
	PFS ≈ OS ≤	PFS 个 « OS 个 »	PFS 🛧

Question de corticoïdes? Type de chimiothérapie ? Taxol vs Nab-paclitaxel ? Other?

Neoadjuvant Chemo-Immunotherapy in TNBC A summary

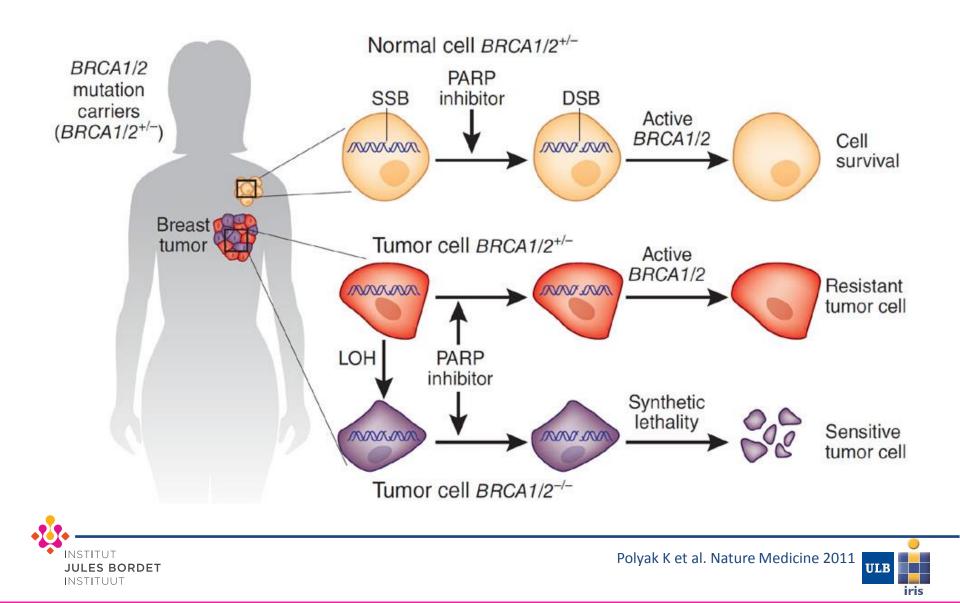
		KN 522 Pembro / Placebo	Impassion 031 Atezo / Placebo
	Patients	n= 602 (pCR Anal.)	n= 333 (after Amendment)
	Carboplatin N+ T3/T4 PD-L1 pos. Primary Endpoints	yes 51.7% / 51.3% 26.0% / 25.6% 83.3% / 81.6 % (CPS≥1) pCR in ITT, EFS	no 33.9% / 42.9% 29.7% / 26.8% 45.2% / 47.3%(IC ≥ 1%) Co-Primary: pCR in ITT and PD-L1 pos.
À	pCR ITT pCR PD-L1pos. pCR PD-L1neg. LN+ LN-	64,8% / 51;2% Δ13;6% 68.9% / 54.9% Δ 14% 45.3% / 30.3% Δ 15% 64.8% / 44.1% Δ 20.7 64.9% / 58.6% Δ 6.3	57;6%/41.1% Δ16.5% 68.8% / 49.3% Δ 19.5% 47.7% / 34.3% Δ 13.3% 57.1% / 30.6% Δ 26.5% 57.8% / 49.0% Δ 8.8%

The patient received 6 months of carboplatin + gemcitabine + pembrolizumab (in a clinical trial) with partial response. What do you propose next?

- 1. Stop treatment and follow-up
- 2. Stop chemotherapy and maintainance pembrolizumab
- 3. Abraxane + atezolizumab in order to improve tumor response
- 4. capecitabine alone as maintenance

If germline BRCA1 mutation and PD-L1 were <u>both positive</u>, what do you propose as therapy?

- 1. Chemo + CPIs
- 2. PARP inhibitor alone (Olaparib or talazoparib)
- 3. Veliparib (PARP inhibitor) + carboplatin + paclitaxel
- 4. Chemo + bevacizumab
- 5. Perform oophorectomy + 1
- 6. Perform oophorectomy + 2 or 3

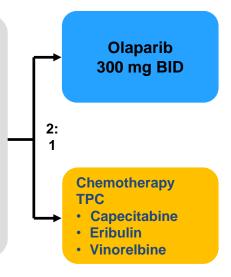


Managing BRCA – Mutated Positive MBC

The concept of synthetic lethality

BRCA positive tumors: Role of PARP inhibitors in MBC HR + and TNBC

- Olaparib (OlympiAd trial)
- Talazoparib (EMBRACAtrial)
- Veliparib (BROCADE 3)



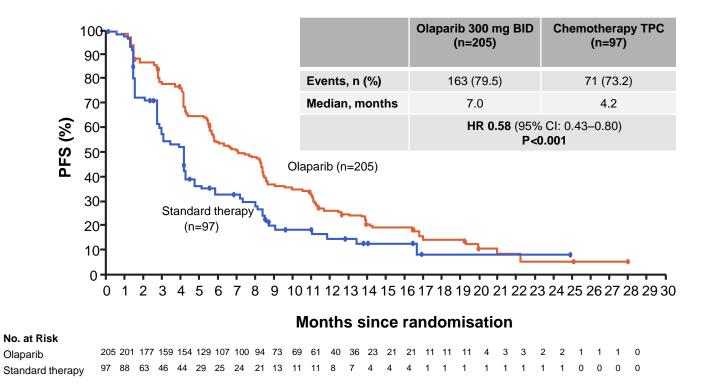
OLYMPIAD: STUDY DESIGN

HER2- MBC(N=302)

- ER+ and/or PR+ (HR+) or
- TNBC
- •Deleterious or suspected deleterious gBRCA mutation
- •≤2 prior CT lines in metastatic setting
- •Prior anthracycline and taxane
- •HR+ disease progressed on ≥1 ET, or not suitable
- •If prior platinum use
 - No evidence of progression under treatment
 - ≥12 months since (neo)adjuvant treatment

Primary endpoint: PFS (RECIST 1.1, BICR)

 Secondary endpoints: OS, time to second progression or death, ORR, global HRQoL (EORTC-QLQ-C30), safety and tolerability


Investigational drug: olaparib is not approved for use breast cancer in Europe. BICR, blinded independent central review; BID, twice daily; EORTC; European Organisation for Research and Treatment of Cancer; ER, oestrogen receptor; gBRCA, germline BRCA; HRQoL, health-related quality of life; PR, progesterone receptor; QLQ, quality of life questionnaire; RECIST, Response Evaluation Criteria In Solid Tumours; TPC, treatment of physician's choice

Robson M, et al. N Engl J Med. 2017;377:523-533.

OLYMPIAD: PFS (CENTRALLY EVALUATED)

Investigational drug: olaparib is not approved for use breast cancer in Europe. Olaparib is approved by US FDA for the treatment of patients with deleterious or suspected deleterious gBRCA mutation, HER2- MBC who have previously been treated with CT in the neoadjuvant, adjuvant or metastatic setting. Patients with HR+ BC should have been treated with a prior ET or be considered inappropriate for ET

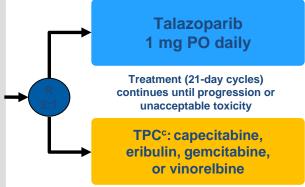
FDA, US Food and Drug Administration

Robson M, et al. N Engl J Med. 2017;377:523-533.

INSTITUT JULES BORDET INSTITUUT

EMBRACA: STUDY DESIGN

Open-label, Phase III trial


Patients with locally advanced or metastatic HER2-negative breast cancer and a germline *BRCA1* or *BRCA2* mutation (n=431)^{a,b}

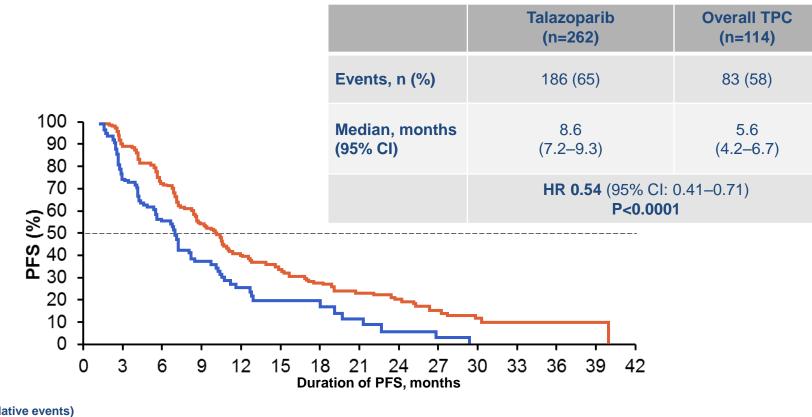
Stratification factors:

•Number of prior chemo regimens (0 or \geq 1)

•TNBC or HR+

•History of CNS metastasis or no CNS metastasis

- Primary endpoint: PFS by blinded central review
- Secondary endpoints: OS, ORR, safety
- Exploratory endpoints: DoR for objective responders, QoL (EORTC QLQ-C30, QLQ-BR23)



Investigational drug: talazoparib is not approved for use in breast cancer in Europe. ^aAdditional inclusion criteria: no more than 3 prior cytotoxic CT regimens for locally advanced or metastatic disease; prior treatment with a taxane and/or a anthracycline unless medically contraindicated; ^bHER2+ disease is excluded; ^cPhysician's choice of therapy must be determined prior to randomisation PO, by mouth

Litton J, et al. Presented at SABCS 2017. Abstract GS6-07.

EMBRACA: PFS BY BLINDED CENTRAL REVIEW

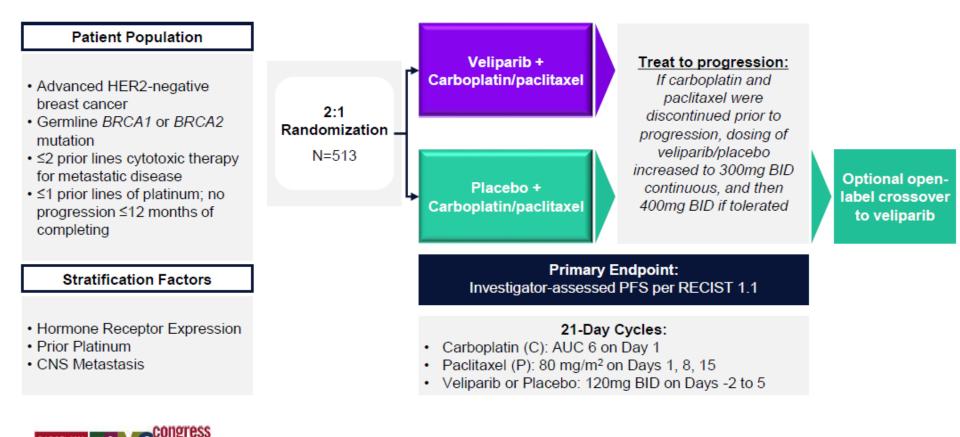
No. at risk (event/cumulative events)

Talazoparib	287 (0/0)	229 (50/50)	148 (53/103)	91 (34/137)	55 (17/154)	42 (9/163)	29 (9/172)	23 (2/174)	12 (4/183)	5 (2/185)	3 (0/185)	1 (0/185)	0 (1/86)	0 (1/86)	287 (0/0)
TPC	144 (0/0)	68 (41/41)	34 (20/61)	22 (8/69)	9 (7/76)	8 (0/76)	4 (3/79)	2 (2/81)	1 (1/82)	0 (1/83)	0 (0/83)	0 (0/83)	0 (0/83)	0 (0/83)	144 (0/0)

Litton J, et al. Presented at SABCS 2017. Abstract GS6-07

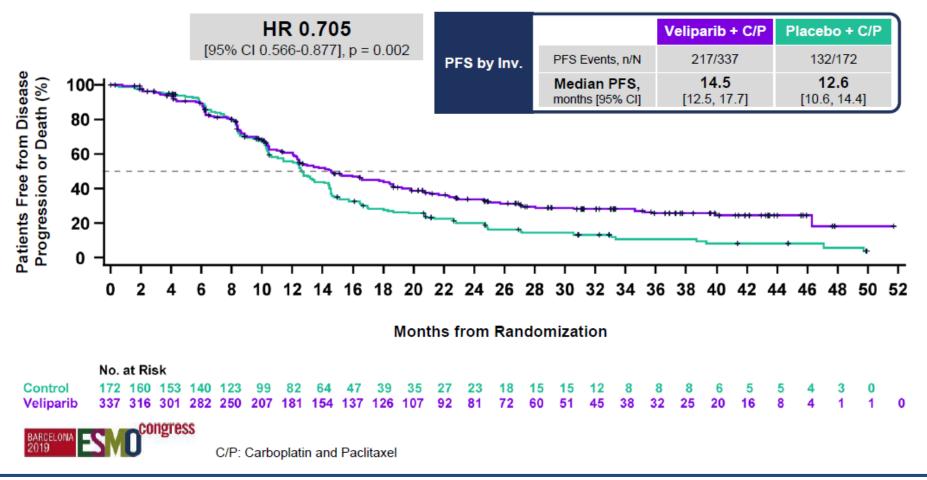
Phase 3 study of veliparib with carboplatin and paclitaxel in HER2-negative advanced/metastatic gBRCA-associated breast cancer: BROCADE3

<u>Véronique Diéras</u>¹, Hyo S. Han², Bella Kaufman³, Hans Wildiers⁴, Michael Friedlander⁵, Jean-Pierre Ayoub⁶, Shannon L. Puhalla⁷, Igor Bondarenko⁸, Mario Campone⁹, Erik H. Jakobsen¹⁰, Mathilde Jalving¹¹, Cristina Oprean¹², Marketa Palácová¹³, Yeon Hee Park¹⁴, Yaroslav Shparyk¹⁵, Eduardo Yañez¹⁶, Matthew Dudley¹⁷, Christine K. Ratajczak¹⁷, David Maag¹⁷, Banu K. Arun¹⁸


¹Institut Curie, Paris, and Centre Eugène Marquis, Rennes, France; ²Moffitt Cancer Center, Tampa, FL, USA; ³Sheba Medical Center, Tel Hashomer, Israel; ⁴Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium; ⁵Prince of Wales Clinical School UNSW and Prince of Wales Hospital, Sydney, Australia; ⁶Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; ⁷UPMC Cancer Centers, Pittsburgh, PA, USA; ⁸Dnipropetrovsk Medical Academy, City Hospital No.4, Dnipro, Ukraine; ⁹Institut de Cancérologie de l'Ouest -Pays de la Loire, France; ¹⁰Vejle Hospital/Lillebaelt Hospital, Vejle, Denmark; ¹¹University Medical Center Groningen, University of Groningen, The Netherlands; ¹²University of Medicine and Pharmacy Timisoara; Oncomed SRL, Timisoara, Romania; ¹³Masaryk Memorial Cancer Institute, Brno, Czech Republic; ¹⁴Samsung Medical Center, Seoul, Korea; ¹⁵Lviv State Regional Treatment and Diagnostic Oncology Center, Lviv, Ukraine; ¹⁶Universidad de la Frontera, Temuco, Chile; ¹⁷AbbVie Inc., North Chicago, IL, USA; ¹⁸The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

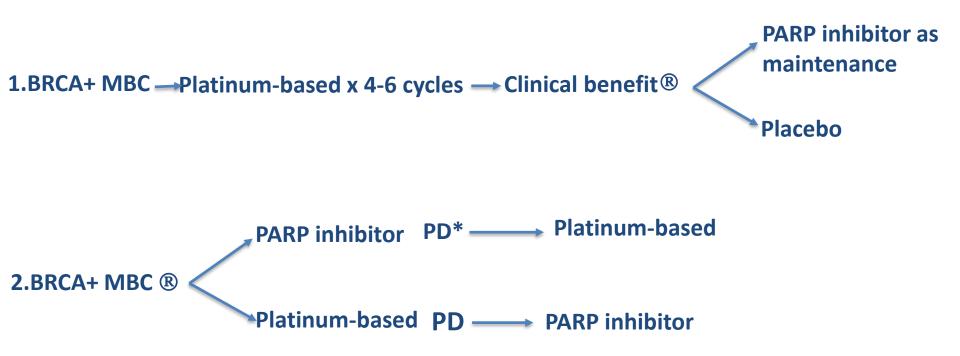
esmo.org

Study Design: BROCADE3 (NCT02163694)



INSTITUT JULES BORDET

INSTITUUT


Primary Endpoint: PFS by Investigator Assessment

Diéras et al, ESMO 2019

Propositions for clinical trials design including platinum compounds and PARP inhibitors in BRCA+ metastatic breast cancer

* Progressive disease

If the patient received for metastatic TNBC the following treatments: Taxane, capecitabine and eribuline ± biologicals; PS now is 2; multimetastatic disease but biological tests still normal: What do you propose?

- 1. Best supportive care
- 2. Clinical trial
- 3. Biopsy of one metastatic lesion and perform NGS
- 4. Sacituzumab govitecan
- 5. Vinorelbine or gemcitabine or eribuline

Sacituzumab Govitecan

Sacituzumab Antibody-Drug Conjugate (ADC)

Humanized RS7 antibody

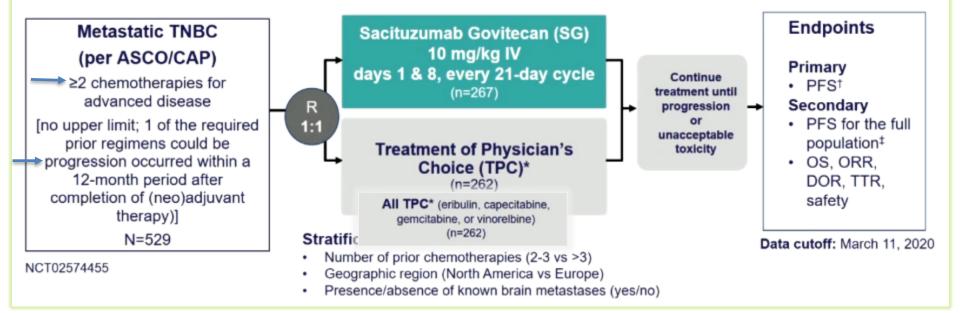
Targets Trop-2, an epithelial antigen expressed on many solid cancers, including mTNBC

SN-38 payload

- Targets 136-fold more SN-38 than the parent compound, irinotecan (topoisomerase I inhibitor)
- ADCs unique chemistry avoids low solubility and selectively delivers SN-38 to the tumor

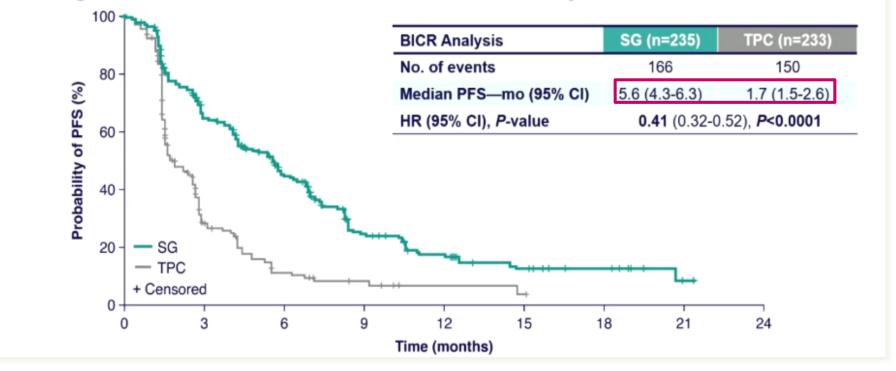
Linker for SN-38

- High drug-to-antibody ratio (7.6:1)
- pH-sensitive linker for rapid payload release at or inside the tumor


This presentation is the intellectual property of the author/presenter. Contact them at shurvitz@mednet.ucla.edu for permission to reprint and/or distribute.

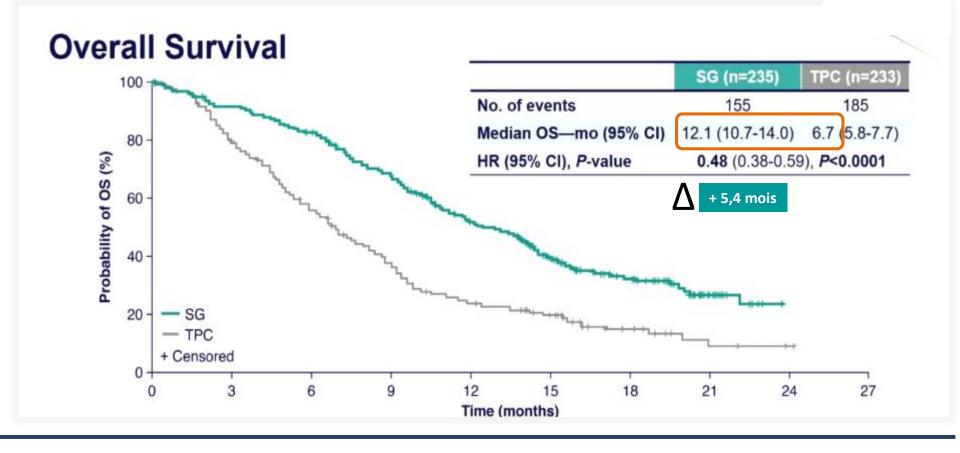
INSTITUT JULES BORDET INSTITUUT

ASCENT: A Phase 3 Confirmatory Study of Sacituzumab Govitecan in Refractory/Relapsed mTNBC



Progression-Free Survival (BICR Analysis)

Overall Response and Best Percent Change From Baseline in Tumor Size



(Sacituzumab Govitecan)

TRAEs (All Grade, >20%; Grade 3/4, >5% of Patients)

			SG (n=258)		TPC (n=224)			
	TRAE* Neutropenia [†] Anemia [‡] Leukopenia [§] Febrile neutropenia Diarrhea Nausea Vomiting Fatigue	All grade %	Grade 3, %	Grade 4, %	All grade, %	Grade 3, %	Grade 4, %	
	Neutropenia ⁺	63	46	17	43	27	13	
Hematologic	Anemia [‡]	34	8	0	24	Grade 3, %	0	
Hematologic	Leukopenia§	16	10	1	11	5	1	
	Febrile neutropenia	6	5	1	2	Grade 3, % 27 5 2 2 <1 <1 <1 <1 5	<1	
	TRAE* All grade % Grade 3, % Grade 4, % All grade, % Grade 3, % Neutropenia† 63 46 17 43 27 Anemia‡ 34 8 0 24 5 Leukopenia§ 16 10 1 11 5 Febrile neutropenia 6 5 1 2 2 Diarrhea 59 10 0 12 <1	0						
Gastrointestinal	Nausea	57	2	<1	26	<1	0	
	Vomiting	29	1	<1	10	<1	0	
TRAE* All grade % Grade 3, % Grade 4, % All grade, % Grade 6, % Grad 6, % Grade 6, %	5	0						
Other	Alopecia	46	0	0	16	Grade 3, % 27 5 2 2 <1 <1 <1 <1 <1 5	0	

→ Arrêt = 4,7 %

TNBC: Conclusions (1)

- A group of TNBC benefits from chemotherapy based on anthracyclines and taxanes (and also from capecitabine and eribuline)
- Standard chemotherapy is revisited with the development of antibody-drugs conjugates (e.g. sacituzumab govitecan)
- BRCA mutated tumors: significant tumor responses to platinum and PARP inhibitors

TNBC: Conclusions (2)

- Immune checkpoint inhibitors + chemotherapy are active in 1st line TNBC, PD-L1 positive population.
- Chemotherapy + biologicals are needed in HR-, HER-2 ⊢, PD-L1 ⊢ tumors (quadruple negative)
- Genomic era: better understanding of the tumor heterogeneity and biology of tumor at baseline and at resistance which might lead to new targets and potentially to new active agents (challenge: studies design and pts accrual)

THANK YOU

