

Checkpoints inhibitors (CPIs) in the early setting of solid cancers : Promising findings and perspectives -

Nuria Kotecki , MD Institut Jules Bordet

BSMO 23 Novembre 2018

OUTLINE

Rationale for immunotherapy use in the early setting

- Adjuvant checkpoint blockade
- Neoadjuvant checkpoint blockade
- Perspectives for development of CPis in the early setting

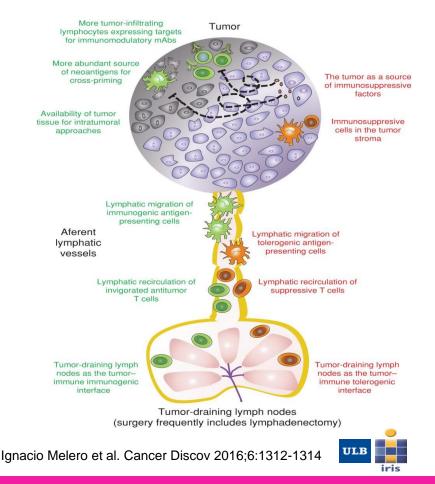
Conclusions

Introduction

- CPIs transformed the treatment of patients with advanced cancers
- Several drugs approved for treatment across many subtypes
- <u>Next logical steps</u>: Explore the potential of CPis, such as PD-1/PD-L1 inhibitors, in a curative setting to improve patients outcome

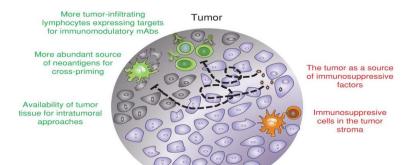
Objectives of systemic treatments in the early setting

- Improve surgical outcomes (neoadjuvant setting)
 Reduce the risk of distant recurrence
- •Eradication of micrometastases
- Increase response to definitive radiotherapy (cRT)


Hypothesis: Immunotherapy serves as a primer for systemic antitumor responses, activating tumor-specific T cells that seek out distant micrometastases.

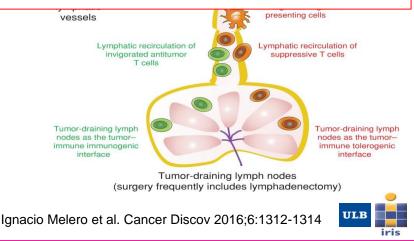
RATIONALE FOR NEOADJUVANT vs ADJUVANT IMMUNOTHERAPY

- •Presence of TiLs that are often expressing the targets for the immunomodulatory mAbs
- •Abundance of tumor antigens available for crosspriming at the time of immunotherapy.
- •Recirculation of **reinvigorated T lymphocytes** out of the primary tumor infiltrate to tackle micrometastatic disease.
- •Preclinical studies Short course of neoadjuvant immunotherapy significantly improved survival compared to adjuvant administration



RATIONALE FOR NEOADJUVANT vs ADJUVANT IMMUNOTHERAPY

•Presence of TiLs that are often expressing the targets for the immunomodulatory mAbs

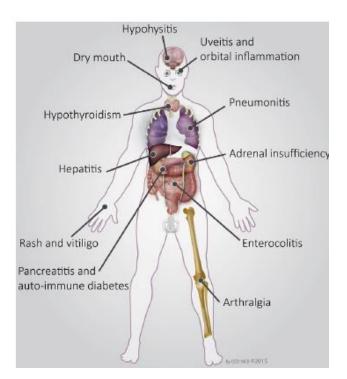

•Abundance of tumor antigens available for cross-

Strategies combining both neoadjuvant and adjuvant dosing might be the most efficacious.

micrometastatic disease.

•Preclinical studies - Short course of neoadjuvant immunotherapy significantly improved survival compared to adjuvant administration

How to best combine CPIs with surgery to reduce disease recurrence ?

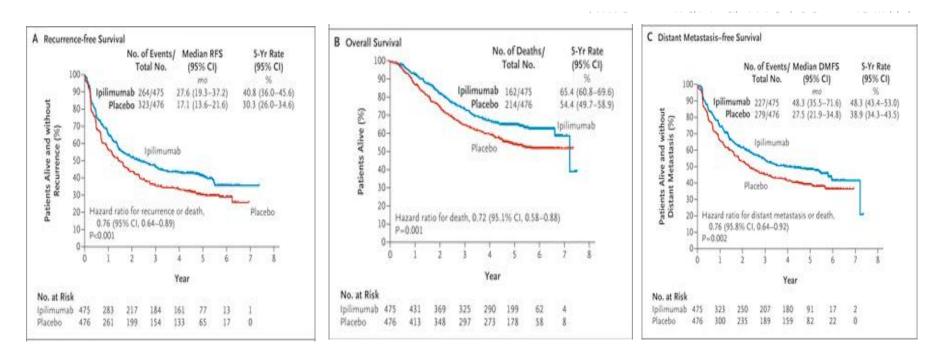


What is the acceptable degree of toxicity in a curative setting ?

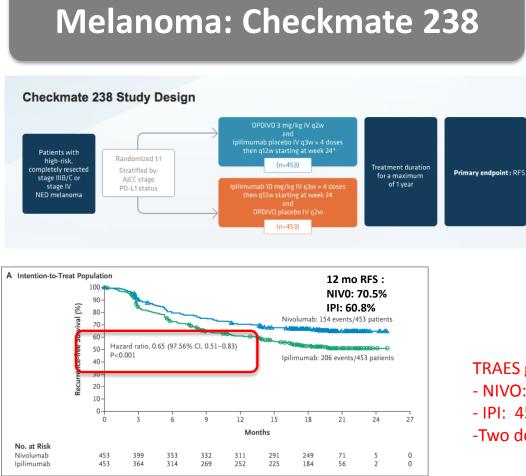
OUTLINE

- Rationale for immunotherapy use in the early setting
- Adjuvant checkpoint blockade
- Neoadjuvant checkpoint blockade
- Perspectives for development of CPis in the early setting

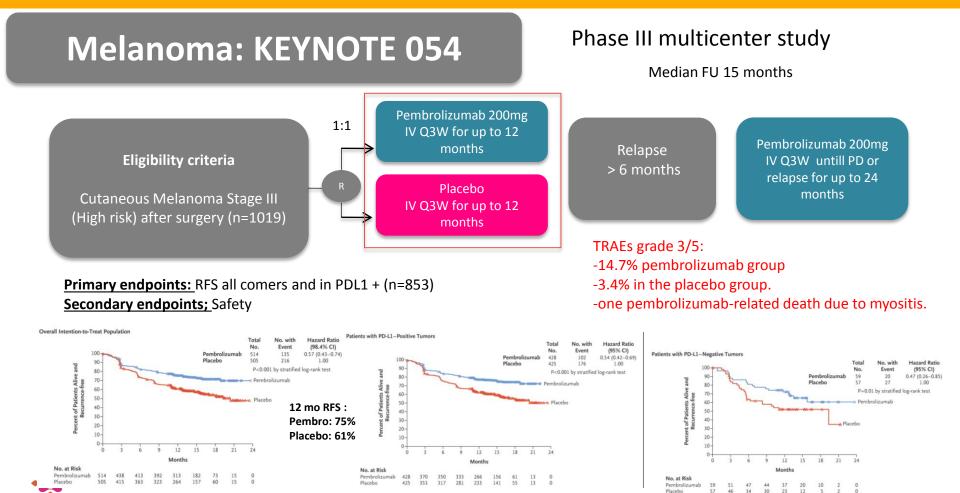
Conclusions



ORIGINAL ARTICLE


Melanoma: NCT00636168

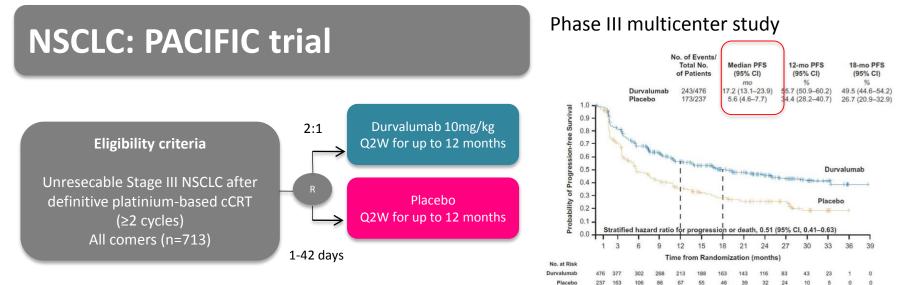
Prolonged Survival in Stage III Melanoma with Ipilimumab Adjuvant Therapy



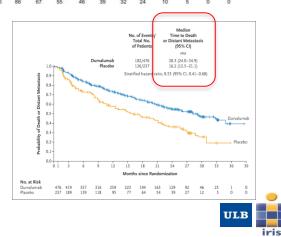
Subgroup	Nivolumab	Ipilimumab	н	lazard Ratio (95% CI)
	no. of events/	no. of patients		. ,
All patients	154/453	206/453		0.66 (0.53-0.81)
Age	,			
<65 yr	106/333	147/339		0.65 (0.51-0.84)
≥65 yr	48/120	59/114		0.66 (0.45-0.97)
Sex				
Male	99/258	133/269		0.68 (0.53-0.88)
Female	55/195	73/184		0.63 (0.44-0.89)
Stage	,			
IIIB	41/163	54/148		0.67 (0.44-1.00)
IIIC	79/204	109/218		0.65 (0.49-0.87)
IV M1a or M1b	25/62	35/66		0.63 (0.38-1.05)
IV M1c	8/20	8/21		1.00 (0.37-2.66)
Not reported	1/2	0/0		,,
Ulceration in stage III	-,-	-7-		
Absent	58/201	94/216		0.59 (0.42-0.82)
Present	60/153	64/135		0.73 (0.51-1.04)
Not reported	2/15	5/15		0.39 (0.07-2.00)
Lymph-node involvement in stage				
Microscopic	41/125	55/134	•	0.71 (0.47-1.07)
Macroscopic	72/219	101/214		0.62 (0.46-0.84)
Not reported	7/25	7/18		0.60 (0.21-1.72)
Ulceration according to lymph-nod involvement in stage III		,		
Present, microscopic	26/66	27/69	_	1.00 (0.58-1.72)
Present, macroscopic	31/78	35/62		0.55 (0.34-0.89)
Absent, microscopic	15/57	26/62		0.51 (0.27-0.96)
Absent, macroscopic	40/130	63/140		0.63 (0.43-0.94)
Not reported	8/38	12/33		0.51 (0.21-1.25)
PD-L1 status				
<5% or indeterminate	123/300	149/299		0.71 (0.56-0.90)
≥5%	31/152	57/154		0.50 (0.32-0.78)
Subtype				
Mucosal	11/16	6/13		1.57 (0.57–4.33)
Cutaneous	118/388	166/378		0.61 (0.48-0.77)
Acral	13/16	12/17		0.86 (0.39-1.90)
Other	12/33	22/45		0.64 (0.31-1.29)
BRAF status	,	,		
Mutation	63/187	84/194		0.72 (0.52-1.00)
No mutation	67/197	105/214		0.58 (0.43-0.79)
Not reported	24/69	17/45		0.83 (0.45-1.54)
			0.25 0.50	1.00 2.00
			■ Nivolumab Better	Ipilimumab Better

TRAES grade ¾

- NIVO: 14.4% (ttt discontinuation 9.7%)
- IPI: 45.9% (ttt discontinuation 42.6%)
- -Two deaths (0.4%) related to ipilimumab

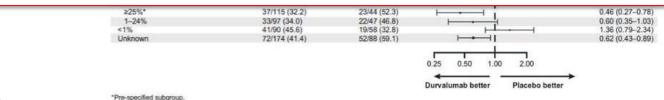


JULES BORDET


Eggermont et al. NEJM 2018

iris

<u>Primary endpoints:</u> PFS, OS <u>Secondary endpoints;</u> ORR, DoR and TTDM, PFS2 by investigator, safety, PROs


	All pat	tients ¹	PD-L1	ſC ≥1%	PD-L1 1	ſC <1%
AE category n (%)	Durvalumab (N=475)	Placebo (N=234)	Durvalumab (N=213)	Placebo (N=90)	Durvalumab (N=91)	Placebo (N=57)
Anv-grade all-causality AEs_n (%)	460 (96.8)	222 (94.9)	205 (96.2)	83 (92.2)	88 (96.7)	54 (94.7)
Grade 3/4	145 (30.5)	61 (26.1)	67 (31.5)	21 (23.3)	26 (28.6)	12 (21.1)
Outcome of death	21 (4.4)	15 (6.4)	8 (3.8)	4 (4.4)	3 (3.3)	4 (7.0)
Leading to discontinuation	73 (15.4)	23 (9.8)	36 (16.9)	5 (5.6)	10 (11.0)	10 (17.5)
SAEs	138 (29.1)	54 (23.1)	64 (30.0)	18 (20.0)	20 (22.0)	11 (19.3)
AESIs	317 (66.7)	115 (49.1)	146 (68.5)	39 (43.3)	62 (68.1)	30 (52.6)

NSCLC: PACIFIC - Survival data by PDL1 status

Cubassus	Duranturati	Disselse	Unstratified Hazar	
Subgroup	Durvalumab	Placebo	Disease Progression o	r Death (95% CI)
	no, of events / no	o. of patients (%)		
All patients	214/476 (45.0)	157/237 (66.2)		0.52 (0.42-0.65)*
PD-L1 status			1	
≥1%	84/212 (39.6)	59/91 (64.8)	⊢ + i	0.46 (0.33-0.64)
≥25%*	48/115 (41.7)	31/44 (70.5)	→ → ÷	0.41 (0.26-0.65)
1-24%	36/97 (37.1)	28/47 (59.6)		0.49 (0.30-0.80)
<1%	49/90 (54.4)	40/58 (69.0)	· · · · · · · · · · · · · · · · · · ·	0.73 (0.48-1.11)
Unknown	81/174 (46.6)	58/88 (65.9)		0.59 (0.42-0.83)
			0.25 0.50 1.00	2.00
			1.41	

EMA approved durvalumab for the treatment of locally-advanced, unresecable NSCLC in adults whose tumours express PD-L1 on ≥ 1% of tumour cells and whose disease has not progressed following platinum-based CRT.

OUTLINE

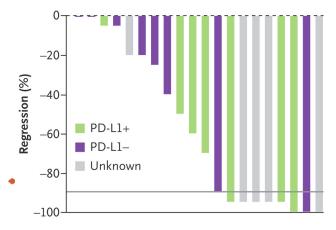
- Rationale for immunotherapy use in the early setting
- Adjuvant checkpoint blockade
- Neoadjuvant checkpoint blockade
- Perspectives for development of CPis in the early setting

Conclusions

Early Evidence of Neoadjuvant PD-1 Blockade in NSCLC

Study name	Phase	ІМР	n=	Primary Endpoint(s)	TRAEs grade 3-5 n=	Delay / No surgery n=	mCR	Potential Biomarkers
NCT 02259621	Pilot study	Nivolumab	21	Safety and feasibility.	1 (4%)	0	mPR 45%	TMB Neoantigen- specific T-cell clones
NEOSTAR	ll randomized	Nivolumab/Ipilim umab	36	mPR	3 (8%)	5	N/NI 26% N 25% NI 27%	T cell infiltration
LCMC 3	II single-arm	Atezolizumab	45	mPR	6 (3%)	0	22% (10%) 3 pCR	No mPR in PDL1- TCO/ICO
NADIM STUDY-SLCG	II single-arm open-label randomized	Nivolumab 360mg IV Carbo AUC6/Taxol 200mg/m2 Q3W 12mo adjuvant Nivolumab	46	24mo-PFS	Related to CT +++	0 (20)	80% pCR 65% (13)	/

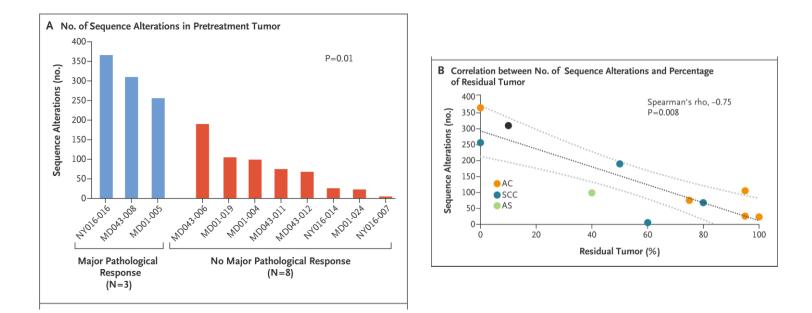
NSCLC: NCT02259621


Pilot Study bicenter trial

Primary endpoints: Safety and feasibility.

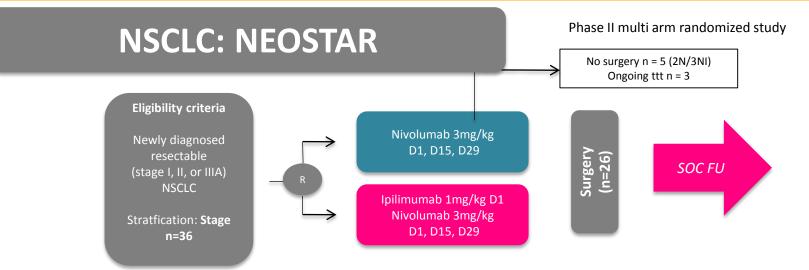
Secondary and exploratory endpoints: Radiologic and pR and correlates

of response in blood and tumor



mCR rate: 45%

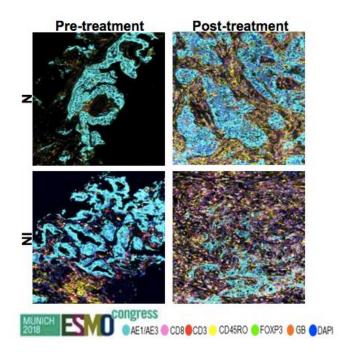
TRAEs: Any grade: 23% Grade 3: 1 pneumonitis with no delay to surgery

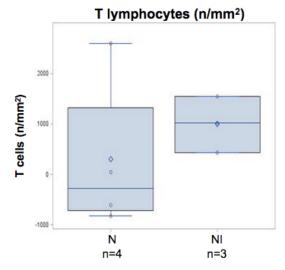


Association between Mutational Burden and Pathological Response to PD-1 Blockade.

Primary Endpoint : MPR ≥ 40% in both arms

<u>Secondary Endpoints</u>; Safety, ORR, RFS, OS, correlates MPR/RECIST with OS/RFS, complete resction rate, pCR, CD8 Tils, tissue, blood and stools biomarkers


Overall** Resected + unresectable	n=31	N n=16	NI n=15
MPR + pCR	8 (26%)	4 (25%)	4 (27%)
0% viable tumor cells (pCR)	5 (16%)	2 (13%)	3 (20%)
1-10% viable tumor cells	3 (10%)	2 (13%)	1 (7%)
Path response pending	5**	2	3

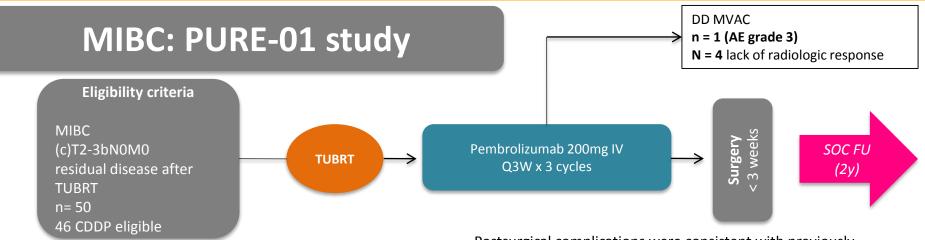

ORR	(CR+PR): 22%((7/32)
-----	--------	---------	--------

ORR by Arm: N: 31% (5/16) NI: 12% (2/16) TRAEs: NI > N grade ½ : Cough, Fatigue, Nausea, Rash n = 59 Grade 3/5: pneumonitis, hypoxia n = 3 Surgical complications; : *pneumonitis, pneumonia, bron fistula(same pt)*, air leak > 5 days

Tumors treated with neoadjuvant NI are characterized by greater T cell infiltration

Change in T lymphocyte density between N and NI (median value in post – pre treatment)

Preliminary results suggest neoadjuvant CPIs induce higher TIL proliferation and activation vs. untreated tumors.



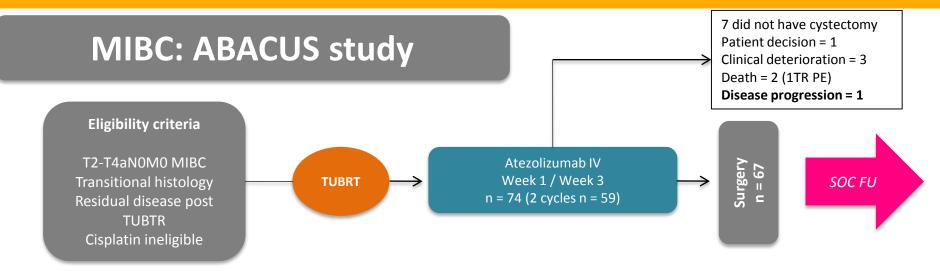
Early Evidence of Neoadjuvant PD-1 Blockade in MIBC

Study name	Phase	IMP	n=	Primary Endpoint(s)	TRAEs grade 3-5 n=	Delay / No surgery n=	pCR	Potential Biomarkers
PURE-01	II single-arm	Pembrolizumab 200mg x 3 Q3W	50	pCR	3 (6%)	0	21 (42%)	PD-L1 CPS ≥ 10%. Higher tumor mutation burden
ABACUS	II single-arm	Atezolizumab 1200mg x 2 Q3W	74	pCR (> 20%) / increase in CD8 count	< 5%	7	29% PDL1 + (> 5%) 40% PDL1 – 16%	PD-L1 CD8 expression

Primary endpoint: pCR

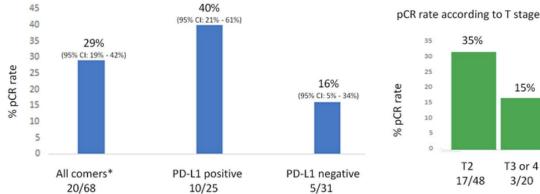
Secondary endpoints: Pathologic downstaging pT < 2, safety

Postsurgical complications were consistent with previously reported findings No post operative death related to surgery


Response	All treated patients (n=50)	PDL1 CPS ≥ 10% (n=35)	PDL1 CPS < 10% (n=15)
pCR (n%)	21 (42) [28.2-56.8]	19 (54.3)	2 (13.3)
Pathologic downstaging (n%)	27 (54) [39.3-68.2]	23 (65.7)	4 (26.7)
Treatment failure (n%)			
Additional MVACx4	5 (10)		
RECISTIVALE BORDE	т0		

Grade ¾ AEs 6% (3pts):

Diarrhea


- •Hyperkaliemia
- •ASAT/ALAT increase (>> Pembro discontinuation)

Primary endpoints: pCR (> 20%) / increase in CD8 count Secondary endpoints: safety and radiological response

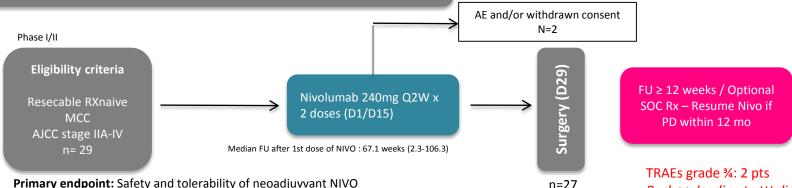
No post operative death related to surgery

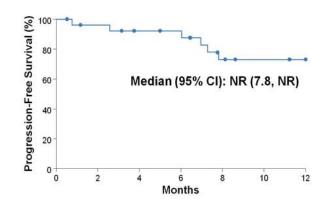
pCR rate according to T stage at baseline

Grade ¾ AEs < 5%: Fatigue transaminitis Anorexia Pyrexia

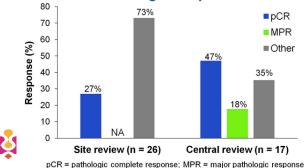
iris

Powles T et al , ASCO 2018c

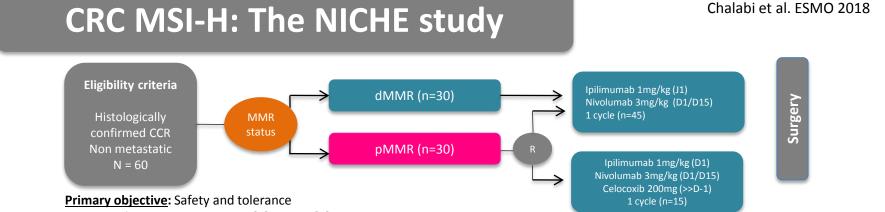

Early Evidence of Neoadjuvant PD-1 Blockade in other tumor types



Pied de page à compléter



Primary endpoint: Safety and tolerability of neoadjuvvant NIVO Secondary: Immunologic changes in blood and tumor Exploratory: RECIST, Pathologic response, PFS, OS, Association with MCPyV status and PDL1 expression with efficacy


(≤10% residual viable tumor); NA = not assessed.

Rash >> leading to ttt discontinuation *Lipase increased*) No surgery 2pts (AE/withdrawn consent) No delay in surgery

Postop interval, months	PFS rate, % (95% CI)
3	92.1 (72.1, 98.0)
6	92.1 (72.1, 98.0)
9	72.6 (48.6, 86.8)
12	72.6 (48.6, 86.8)

Topalian et al. ASCO 2018

Progression-Free Survival

Primary objective: Safety and tolerance n = 19 pts (15 evaluable -dMMR [7] pMMR [8] Median duration between D1 and surgery = 32 days

dMMR n=7

cTNM	урТNM	Residual tumor cells (%)
cT2N2a	ypT0N0	0
cT2N0	ypT0N0	0
cT3N0	ypT0N0	0
cT3N2a	ypT1N0	1
cT4aN2a	ypT2N0	2
cT4aN1a	ypT3N1	2

pMMR n=8

No new safety signals Treatment was well tolerated

сТММ	урТММ	Residual tumor cells (%)
cT3N1a	ypT3N2	85
cT3N0	ypT3N0	90
cT2N0	ypT3N1	90
cT2N0	ypT3N0	90
cT3aN1b	ypT3N1	90
cT3aN1b	ypT3N2	95
cT3N0	ypT3N0	100
cT2N0	урТЗN0	100

OUTLINE

- Rationale for immunotherapy use in the early setting
- Adjuvant checkpoint blockade
- Neoadjuvant checkpoint blockade
- Perspectives for development of CPIs in the early setting

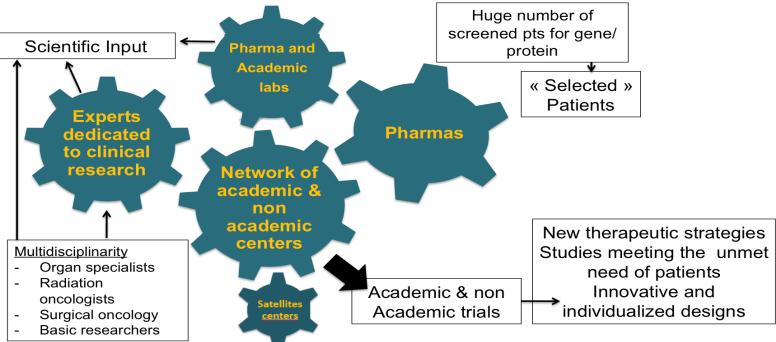
Perspectives

► ≥ 75 ongoing trials investigating IO in the early setting in various tumor types

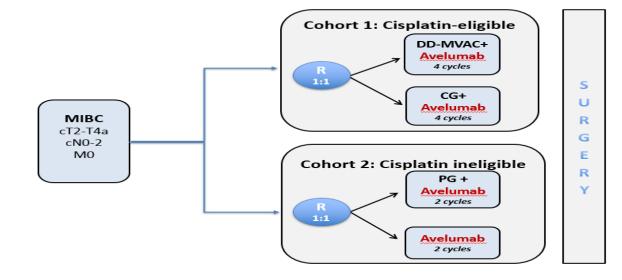
- Various CPIs
- Combination with either chemotherapy/radiotherapy
- . Innovative immunotherapies and/or approaches
- Combining neoadj/adj approaches
- High potential for translational research and identification of clinical utility
 - PDL1, TiLs, TMB, CD8 expression
- Moving to an much more earlier setting ?
 - (e.g Pembrolizumab IV in NMBIC)

Challenges for moving Immunotherapies from salvage therapy to earlier disease treatments

The use of ICPis in the adjuvant/neoadjuvant setting raises a number of questions:

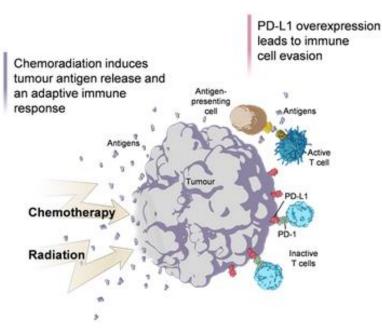

- Acceptable degree of toxicity in a potentially curative setting
- Duration of treatment
- Best treatment shedule (intermittent vs continuous)
- Choosing appropriate comparators
- Combinations with others types of neoadjuvant treatments

A NEW ACADEMIC MODEL OF CLINICAL RESEARCH COLLABORATION BASED ON THE PROGRESS ON MOLECULAR BIOLOGY AND METHODOLOGICAL ISSUES



Speed and quality academic and non academic trials

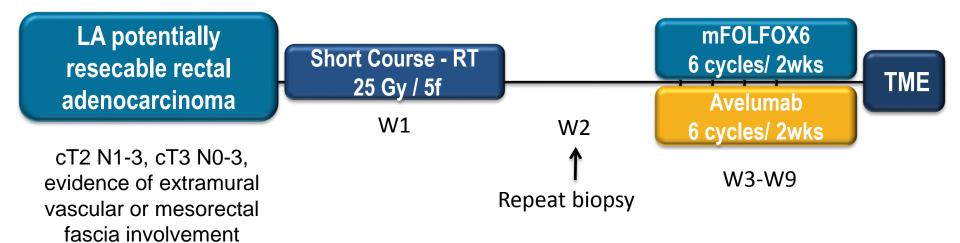
Oncodistinct 004: AURA trial


Primary endpoint: PCR rate (ypT0ypN0)

Number of pts 150 evaluable patients

RATIONAL FOR COMBINING RADIATION & IMMUNOTHERAPY

CHEMORADIATION



Oncodistinct 005 - Short-course RT followed by mFOLFOX6 + Avelumab agent for LA rectal ADK

Primary objective: pCR rate **Secondary objectives:** 3-year DFS, Safety and tolerability, QoL, explore changes in PD-L1 expression and T-cell infiltration

OUTLINE

- Rationale for immunotherapy use in the early setting
- Adjuvant checkpoint blockade
- Neoadjuvant checkpoint blockade
- Perspectives for development of CPis in the early setting

Conclusions

Conclusions

- Early use of CPis seems feasible and safe with very few delay to surgery
- Encompassing both neoadjuvant and adjuvant dosing might be the most efficacious.
- Implement TR as much as possible using the possiblity of WOO trials in this setting to discover biomarker of clinical activity
- Try to select patients who will need neoadjuvant/adjuvant CPis
- In the NA setting does pCR benefit = overall survival benefit ?
- Many questions remains open and results needs to be confirmed
- >> Many trials ongoing

Thank you.

