

Targeted therapies Advanced oesophagogastric cancers

Dr Francesco Sclafani, MD PhD Chef de Clinique Adjoint Institut Jules Bordet Brussels

Travel expenses: Bayer

Incidence and mortality of OGCs worldwide

Eastern Asia

Southern Africa

Eastern Africa

Northern Europe

Western Europe

Eastern Europe

Northern America

South America

Melanesia

Australia/New Zealand

Micronesia/Polynesia

South-Eastern Asia

Southern Europe

Middle Africa

Western Asia

Northern Africa

Central America

Western Africa

Caribbean

South Central Asia

- Oesophageal cancer
 - 7th most common cancer
 - 6th cause of cancer-related death
- Gastric cancer
 - 5th most common cancer
 - 3rd cause of cancer-related death

Trends in 5-year relative survival for OGCs in the US

Oesophageal cancer

+22%

ULB iris

Type of drugs approved by FDA for main GI cancers

iris

Evolution of understanding the biology of OGCs

Integrated genomic characterisation of OGCs

The Cancer Genome Atlas Research Network, Nature 2014; The Cancer Genome Atlas Research Network, Nature 2017

VSTITUT

INSTITUUT

JULES BORDET

Rationale for using/investigating targeted therapies in OGCs

The Cancer Genome Atlas Research Network, Nature 2014; The Cancer Genome Atlas Research Network, Nature 2017

Treatment algorithm for advanced gastric cancer

HER-2

Truncating mut. Missense mut. (recurrent or in COSMIC) Missense mut. (all other) Amplification Hom. deletion

The Cancer Genome Atlas Research Network, Nature 2014; The Cancer Genome Atlas Research Network, Nature 2017

Successful inhibition of HER-2 in OGCs

Addition of trastuzumab to CF/X [↑] RR, PFS and OS

mOS 13.8 m vs. 11.1 m HR 0.74 (95% CI: 0.60 – 0.91) p=0.0046

Unsuccessful trials of HER-2 inhibitors in OGCs

VEGF

Truncating mut. Missense mut. (recurrent or in COSMIC) Missense mut. (all other) Amplification Hom. deletion

The Cancer Genome Atlas Research Network, Nature 2014; The Cancer Genome Atlas Research Network, Nature 2017

Successful trials of anti-angiogenic therapy in OGCs

Trial	Patients	Comparison	Endpoint	Outcomes	HR / p value
REGARD*	2nd line advanced GC/GEJ	Ramucirumab BSC	OS	5.2 m 3.8 m	HR 0.776 p=0.047
RAINBOW°	2nd line advanced GC/GEJ	Paclitaxel + Ramucirumab Paclitaxel	OS	9.6 m 7.4 m	HR 0.807 p=0.017
APATINIB [^] (China)	≥3rd line advanced GC/GEJ	Apatinib BSC	OS	6.5 m 4.7 m	HR 0.709 p=0.0149

* Also statistically significant improvement in PFS

° Also statistically significant improvement in RR and PFS

^ Also statistically significant improvement in DCR and PFS

Fuchs, Lancet 2014; Wilke, Lancet Oncol 2014; Li, J Clin Oncol 2016

Unsuccessful trials of anti-angiogenic therapy in OGCs

EGFR

Truncating mut. Missense mut. (recurrent or in COSMIC) Missense mut. (all other) Amplification Hom. deletion

The Cancer Genome Atlas Research Network, Nature 2014; The Cancer Genome Atlas Research Network, Nature 2017

Prognostic and predictive role of EGFR in OGCs

INSTITUUT

Unsuccessful trials of anti-EGFR agents in OGCs

HER-2, EGFR and VEFG: still useful therapeutic target?

"Insanity is doing the same thing over and over again and expecting different results"

JULES BORDET

INSTITUUT

Mind the intratumour HER-2 heterogeneity in OGCs

And the impact that this may have in terms of treatment outcomes

HER2 % of positive cells in IHC 3+ patients from TOGA trial							
% cells	<10%	10-30%	31-79%	≥80%			
% patients	3%	27%	31%	39%			

Survival outcome according to HER-2 heterogeneity in TOGA trial

	Chemo	Chemo + T		
% stained cells IHC 2+	mOS	mOS	HR	95 % CI
0 % to ≤30 %	11.7	11.4	0.83	0.50–1.41
>30 % to 100 %	9.2	12.5	0.66	0.36–1.18
IHC 3+				
0 % to ≤30 %	13.6	18.0	0.71	0.40–1.25
>30 % to 100 %	12.3	17.9	0.55	0.37–0.81

Van Cutsem, Gastric Cancer 2015

HER-2 is not a static biomarker

Something to consider when investigating anti-HER-2 strategies beyond progression

 HER-2 status changes post trastuzumab therapy (up to 32% of HER-2 positive tumours become HER-2 negative following anti-HER-2 treatment, more common in IHC2+ vs IHC3+)

iris

 Non-HER-2 biomarkers become important when HER-2 changes

Pietrantonio, Int J Cancer 2016; Janjigian, Cancer Discov 2017; Seo, Gastric Cancer 2019

Bypassing HER-2 heterogeneity: trastuzumab deruxtecan

Bypassing HER-2 heterogeneity: trastuzumab deruxtecan

- Dose expansion phase I trial (n=44)
- OGJ/Gastric cancer, HER-2 3+ or 2+/ISH+
- Median number of prior therapy 3 (2-5)
- 100% prior trastuzumab
- 55% prior irinotecan

Randomised phase II trial ongoing (DESTINY-GASTRIC01) ≥3rd line trastuzumab deruxtecan vs investigator's choice

Shitara, Lancet Oncol 2019

	AZD	4547	Pacli	taxel
Best response	FISH L-amp	FISH H- amp	FISH L-amp	FISH H-amp
CR (%)	0	0	0	0
PR (%)	0	0	1 (10%)	2 (40%)
SD (%)	1 (11%)	2 (25%)	3 (30%)	2 (40%)
PD (%)	8 (89%)	6 (75%)	6 (60%)	1 (20%)

Van Cutsem, Ann Oncol 2017

- RMH FGFR trial (n=9)
- Refractory, FGFR2 amplified OGC patients treated with AZD4547
- Objective response in 3/9 patients

Mean duration of response 6 months

RMH FGFR Trial 12/135 (9%) amplified		500um		100µm	Long Long			
% amplified cells	14%	27%	28%	37%	44%	94%	99 %	99 %
AZ SHINE Trial				о _µ т 100µ		Imm	500µm)	100µm
% amplified cells	10%	169	6 10	6%	24%	52%	59 %	70%

Images courtesy of Neil R Smith

iris

Anti-EGFRs in OGCs: missing out on a good opportunity Subgroup analysis of the EXPAND trial

Lordick, Lancet Oncol 2013

INSTITUT JULES BORDET

INSTITUUT

Anti-EGFRs in OGCs: missing out on a good opportunity Subgroup analysis of the COG trial

Beyond HER-2, VEGF and EGFR

Other randomised phase III trials of targeted therapies in OGCs

Trial	Patients	Setting	Comparison	1° endpoint	Outcome	HR – p value
RILOMET-1	609 (100% MET pos)	1 st line	ECX + Rilotumumab ECX	PFS	8.8 10.7	HR 1.34 p=0.003
METGastric	562 (100% MET pos)	1 st line	FOLFOX + Onartuzumab FOLFOX	OS	11.0 11.3	HR 0.82 p=0.24
GAMMA-1	432	1 st line	FOLFOX + Andecaliximab FOLFOX	OS	12.5 11.8	HR 0.93 p=0.56
GOLD	643 (15% ATM neg)	2 nd line	Paclitaxel + Olaparib Paclitaxel	OS	8.8 6.9	HR 0.79 p=0.026
BRIGHTER	714	2 nd line	Paclitaxel + Napabucasin Paclitaxel	OS	6.9 7.4	HR 1.01 p=0.86
GRANITE	656	≥2 nd line	Everolimus Placebo	OS	5.4 4.3	HR 0.90 P=0.124

Catenacci, Lancet Oncol 2017; Shah, JAMA Oncol 2017; Shah, ASCO 2018; Bang, Lancet Oncol 2017; Shah, GI ASCO 2019; Ohtsu, J Clin Oncol 2013

Other randomised phase III trials of targeted therapies in OGCs

Trial	Patients	Setting	Comparison	1° endpoint	Outcome	HR – p value
RILOMET-1	609 (100% MET pos)	1 st line	ECX + Rilotumumab ECX	PFS	8.8 10.7	HR 1.34 p=0.003
METGastric 🔀	562 (100% MET pos)	1 st line	FOLFOX + Onartuzumab FOLFOX	OS	11.0 11.3	HR 0.82 p=0.24
GAMMA-1 🔀	432	1 st line	FOLFOX + Andecaliximab FOLFOX	OS	12.5 11.8	HR 0.93 p=0.56
GOLD 🔀	643 (15% ATM neg)	2 nd line	Paclitaxel + Olaparib Paclitaxel	OS	8.8 6.9	HR 0.79 p=0.026
BRIGHTER	714	2 nd line	Paclitaxel + Napabucasin Paclitaxel	OS	6.9 7.4	HR 1.01 p=0.86
GRANITE 🔀	656	≥2 nd line	Everolimus Placebo	OS	5.4 4.3	HR 0.90 P=0.124

Catenacci, Lancet Oncol 2017; Shah, JAMA Oncol 2017; Shah, ASCO 2018; Bang, Lancet Oncol 2017; Shah, GI ASCO 2019; Ohtsu, J Clin Oncol 2013

Randomised phase II trials of targeted therapies in oGCs: anything promising?

Trial	Patients	Setting	Comparison	1° endpoint	Outcome	HR – p value
STARGATE	195	1 st line	CX + Sorafenib CX	PFS	5.6 5.3	HR 0.92 p=0.609
FAST	161 (100% CLDN18.2)	1 st line	EOX + Zolbetuximab EOX	PFS	7.5 5.3	HR 0.44 p<0.0005
NCT00982592	124	1 st line	FOLFOX + Vismodegib FOLFOX	PFS	7.3 8.0	HR na p=0.64
PaFLO	87	1 st line	FLO + Pazopanib FLO	6m PFS	31.4% 25.9%	HR 0.93 p=NS
ZAMEGA	64	1 st line	FOLFOX + Aflibercept FOLFOX	6m PFS	60.5% 57.1%	HR 1.11 p=0.72
NCT01238055	107	2 nd line	Docetaxel + Sunitinib Docetaxel	TTP	3.9 2.6	HR 0.77 p=0.206
SHINE	71 (FGFR2 amplified)	2 nd line	AZD4547 Paclitaxel	PFS	1.8 3.5	HR 1.57 p=NS
INTEGRATE	152	2 nd /3° line	Regorafenib Placebo	PFS	2.6 0.9	HR 0.40 p<0.001
	Kang, ESMO 2014;	Sahin, GI ASCO 2	019; Cohen, ASCO 2013; Thuss-Patienc	e, ASCO 2015; Clea	ry, Cancer 2019;	III.B

Yi, Br J Cancer 2012; Van Cutsem, Ann Oncol 2017; Pavlakis, J Clin Oncol 2016

INSTITUUT

iris

Randomised phase II trials of targeted therapies in oGCs: anything promising?

Trial	Patients	Setting	Comparison	1° endpoint	Outcome	HR – p value
STARGATE	195	1 st line	CX + Sorafenib CX	PFS	5.6 5.3	HR 0.92 p=0.609
FAST	161 (100% CLDN18.2)	1 st line	EOX + Zolbetuximab EOX	PFS	7.5 5.3	HR 0.44 p<0.0005
NCT00982592	124	1 st line	FOLFOX + Vismodegib FOLFOX	PFS	7.3 8.0	HR na p=0.64
PaFLO	87	1 st line	FLO + Pazopanib FLO	6m PFS	31.4% 25.9%	HR 0.93 p=NS
ZAMEGA	64	1 st line	FOLFOX + Aflibercept FOLFOX	6m PFS	60.5% 57.1%	HR 1.11 p=0.72
NCT01238055	107	2 nd line	Docetaxel + Sunitinib Docetaxel	TTP	3.9 2.6	HR 0.77 p=0.206
SHINE	71 (FGFR2 amplified)	2 nd line	AZD4547 Paclitaxel	PFS	1.8 3.5	HR 1.57 p=NS
	152	2 nd /3° line	Regorafenib Placebo	PFS	2.6 0.9	HR 0.40 p<0.001
	ET Kang, ESMO 2014,	; Sahin, GI ASCO 2	019; Cohen, ASCO 2013; Thuss-Patience	e, ASCO 2015; Clea	ry, Cancer 2019;	III.B

Yi, Br J Cancer 2012; Van Cutsem, Ann Oncol 2017; Pavlakis, J Clin Oncol 2016

INSTITUUT

iris

CLDN18.2: a potential new therapeutic target

ULB iris

Immunotherapy

Rationale for using/investigating immunotherapy in OGCs

Alexandrov, Nature 2013; Salem, Mol Cancer Res 2018

Summary of phase III trials of immunotherapy in OGCs

Trial	Setting	Patients	Comparison	Endpoint	Outcome
KEYNOTE-062	1 st line	OGJ & gastric (CPS≥1)	Pembro Pembro + CF/X CF/X	PFS/OS	Pembro non inferior to CF/X Pembro non superior to CF/X (CPS≥10) Pembro + CF/X non superior to CF/X
KEYNOTE-061	2 nd line	OGJ & gastric (CPS≥1)	Pembro Paclitaxel	PFS/OS	Pembro non superior to Paclitaxel
ATTRACTION-3	2 nd line	Oesophageal SCC (PD-L1 unselected)	Nivolumab Paclitaxel/Docetaxel	OS	Nivo superior to Paclitaxel/Docetaxel
KEYNOTE-181	2 nd line	Oesophageal & OGJ (PD-L1 unselected)	Pembro Investigator's choice CT	OS	Pembro superior to CT in CPS≥10) Pembro non superior to CT in SCC Pembro non superior to CT in all pts
JAVELIN GASTRIC 300	≥3 rd line	OGJ and gastric (PD-L1 unselected)	Avelumab Paclitaxel/Irinotecan	OS	Avelumab non superior to Paclitaxel/Irinotecan
ATTRACTION-2	≥3 rd line	OGJ and gastric (PD-L1 unselected)	Nivolumab Placebo	OS	Nivo superior to Placebo

PD-L1 expression and benefit from immunotherapy in OGCs

Trial	Setting	Patients	Comparison	HR Any/CPS<1/ PD-L1<1%	HR CPS≥1/ PD-L1 ≥1%	HR CPS≥10/ PD-L1 ≥10%
KEYNOTE-062	1 st line	OGJ & gastric (CPS≥1)	Pembro vs CT Pembro + CT vs CT	-	0,91 0.85	0,69 0.85
KEYNOTE-061	2 nd line	OGJ & gastric	Pembro vs CT	1.20	0.82	0.64
ATTRACTION-3	2 nd line	Oesophageal SCC (PD-L1 unselected)	Nivolumab vs CT	0.84	0.69	0.69
KEYNOTE-181	2 nd line	Oesophageal & OGJ (PD-L1 unselected)	Pembro vs CT	0.85	-	0.67
JAVELIN GASTRIC 300	≥3 rd line	OGJ and gastric (PD-L1 unselected)	Avelumab vs CT	1.22	0.94	-
ATTRACTION-2	≥3 rd line	OGJ and gastric (PD-L1 unselected)	Nivolumab vs BSC	0.72	0.51	-

PD-L1 expression and benefit from immunotherapy in OGCs

Trial	Setting	Patients	Comparison	HR Any/CPS<1/ PD-L1<1%	HR CPS≥1/ PD-L1 ≥1%	HR CPS≥10/ PD-L1 ≥10%
KEYNOTE-062	1 st line	OGJ & gastric (CPS≥1)	Pembro vs CT Pembro + CT vs CT	-	0,91 0.85	0,69 0.85
KEYNOTE-061	2 nd line	OGJ & gastric	Pembro vs CT	1.20	0.82	0.64
ATTRACTION-3	2 nd line	Oesophageal SCC (PD-L1 unselected)	Nivolumab vs CT	0.84	0.69	0.69
KEYNOTE-181	2 nd line	Oesophageal & OGJ (PD-L1 unselected)	Pembro vs CT	0.85	-	0.67
JAVELIN GASTRIC 300	≥3 rd line	OGJ and gastric (PD-L1 unselected)	Avelumab vs CT	1.22	0.94	-
ATTRACTION-2	≥3 rd line	OGJ and gastric (PD-L1 unselected)	Nivolumab vs BSC	0.72	0.51	-

Better biomarkers for immunotherapy in OGCs

Combination treatment: anti-angiogenic + anti-PD-1 agents

Potentially extending the benefit of immunotherapy to MSS tumours

REGONIVO/EPOC 1603 trial

- Phase I trial in Japan (n=50)
- Gastric and colorectal cancer
- 98% MSS
- Median prior therapies: 3 (2-8)
- 98% had prior anti-angiogenic therapy

Fukuoka, ASCO 2019

 14% had prior PD-1/PD-L1 inhibitors

The ideal scenario

Biomarker screening and molecularly matched therapies

iris

Inter-tumoral lesions genomic heterogeneity

A cautionary note and useful insight for future drug development and trial designs

Pectasides, Cancer Discov 2017

Inter-tumoral lesions genomic heterogeneity

Genomic profiling of ctDNA may help to address inter-tumoral lesion heterogeneity

MS: mass spectometry FISH: fluorescent in situ hybridization

IHC: immunohistochemistry

The genomic complexity of OGCs

Another cautionary note and useful insight for future drug development and trial designs

Co-amplification of RTKs and/or downstream mitogenic activation is almost ubiquitous!

INSTITUT JULES BORDET INSTITUUT

Secrier, Nat Genet 2016

Conclusions

- Targeted therapies are an important component of the therapeutic algorithm of advanced OGCs and will possibly shape the treatment paradigm of early stage tumours
- Lack of optimal, biomarker-driven patient selection, intratumour heterogeneity and genomic complexity of OGCs are likely responsible for the failure of unsuccessful trials and should be kept in mind when designing future studies
- ctDNA-based genomic profiling and combination target treatment may represent successful strategies to pursue in future clinical trials

