

IMMUNOTHERAPY BEYOND CHECKPOINT INHIBITION: WHY ARE WE STRUGGLING?

Karim Y. Vermaelen, MD, PhD – UZG Thoracic Oncology

14th BSMO-Bordet symposium on the Integration of Molecular Biology Advances into Oncology Clinical practice | Nov 27-28 2020

GENT

CANCER IMMUNOTHERAPY: EVOLUTION AND REVOLUTION

IMMUNOTHERAPY COMBINATIONS

IMMUNOTHERAPY

CANCER IMMUNOTHERAPY: EVOLUTION AND REVOLUTION

KNOWLEDGE GAPS IN TODAY'S IMMUNO-ONCOLOGY PRACTICE

- selection of optimal responders
- selection of optimal combination partner(s)
- understanding resistance mechanisms
- prediction of severe toxicity risk
- mechanism of action of CPIs

UNDERSTANDING UNDERLYING BIOLOGY

ANTI-CANCER IMMUNITY IS A MULTI-STEP PROCESS

INCREASING RESPONSE RATES: SELECTION vs COMBINATION

are we doing a good job at this today?

- PD-L1 appears on cancer cells following immune attack
- PD-L1 paralyzes immune cells carrying PD-1

E. Garon et al, NEJM 2015

Lung cancer: higher PD-L1 expression enriches for better outcomes

K. Vermaelen et al, Seminars in Cancer Biology 2018

Lung cancer: higher PD-L1 expression enriches for better outcomes

pembrolizumab ≥2nd line

E. Garon et al, NEJM 2015

- case: NSCLC, squamous, rapid & near complete response to durvalumab
- PD-L1 0% on primary tumor and liver metastasis

\rightarrow PD-L1 does not capture the full picture of cancer-immune system interactions

normal cell

Tumor Mutational Burden can enrich for better response and PFS under PD1-blockade (not so clear for OS)

TUMOR MUTATIONAL BURDEN IS A DRIVER OF IMMUNOGENICIT

Cancers with defects in DNA repair (MSI+) are heavily infiltrated with immune cells "MSI-test" is predictive of response to checkpoint blockade (regardless of cancer origin)

TUMOR MUTATIONAL BURDEN IS A DRIVER OF IMMUNOGENICIT

Cancers with defects in DNA repair (MSI+) are exceptional responders to anti-PD1 (regardless of organ origin)

Dung T. Le ASCO 2015

TUMOR MUTATIONAL BURDEN IS A DRIVER OF IMMUNOGENICITY

FDA News Release									
tumor wi	th a specific genetic feature								
f SHARE Y TWEET	INKEDIN 🖗 PINIT 🔄 EMAIL 🔒 PRINT								
For Immediate Release	May 23, 2017								
Release	The U.S. Food and Drug Administration today granted acc treatment for patients whose cancers have a specific gene This is the first time the agency has approved a cancer tre common biomarker rather than the location in the body wi								
	Keytruda (pembrolizumab) is indicated for the treatment of patients with unresectable or metastatic solid tumors that having a biomarker referred to as microsatellite instability-l repair deficient (dMMR). This indication covers patients with progressed following prior treatment and who have no sati treatment options and patients with colorectal cancer that treatment with certain chemotherapy drugs.								

or any solid

celerated approval to a etic feature (biomarker). eatment based on a here the tumor originated.

f adult and pediatric have been identified as high (MSI-H) or mismatch ith solid tumors that have tisfactory alternative t has progressed following

MUTATIONAL BURDEN: QUANTITY vs QUALITY?

NOT ALL MUTATIONS ARE CREATED EQUAL MERKEL CELL CARCINOMA: polyomavirus+ en polyomavirus-

Adapted from: G. Goh et al, Oncotarget 2016, P. Nghiem et al, NEJM 2016

IS RESPONSE TO IMMUNOTHERAPY IN THE "HOST" GENES?

germline polymorphisms in immune-related genes determine the diversity in immune responses to pathogens

"HOST" FACTORS: SNPs in IMMUNE-RELATED GENES

germline polymorphisms in immune-related genes impact therapeutic efficacy of chemotherapy and immune checkpoint inhibition

THE QUEST FOR THE OPTIMAL I-O COMBINATION THERAPY

INCREASING RESPONSE RATES: SELECTION vs COMBINATION

Designing optimal combination immunotherapies requires a comprehensive understanding of the tumor "immune climate"

Connective tissue "shield"

Loss of MHC/HLA and/or loss of antigen

Suppressive lymphocytes and myeloid cells Suppressive metabolic environment

Designing optimal combination immunotherapies requires a comprehensive understanding of the tumor "immune climate"

INFLAMED

IMMUNE EXCLUDED

Essential T-cell activity required

KILL	INFILTRATE	GEN
tumour	tumour	activ
→ "Just" add checkpoint inhibitor	→ Normalize vasculature, disrupt stromal shield	→ Ir add radio

Chen and Mellman. Immunity 2013; Hegde, et al. Clin Cancer Res 2016; Kim and Chen. Ann Oncol 2016; Chen and Mellman. Nature 2017

IMMUNE DESERT

IERATE e, tumour-directed T cells

ncrease immune priming anti-CTLA4, chemo- or iotherapy, *vaccines, ...*

conventional cytotoxic therapies (chemo, radiation) + immunotherapy: the "one-two punch" strategy

2.

Combination immunotherapy can push the performance of IO monotherapy upward \rightarrow 2018: **7** phase III combination trials in 1st line advanced NSCLC

Response rates monotherapy

Response rates combo therapies

S-o-C I-O mono

I-O + chemo

The wild proliferation of immuno-oncology combination trials

Trial start year	2009	2010	2011	2012	2013	2014	2015	2016	2017
Clinical phase Phase 4 Phase 3 Phase 2 Phase 1/2 Phase 1	•	•	••						
Number of new trials	1	5	2	13	20	58	190	329	469
Planned new enrollment	136	2473	582	4867	5031	11 276	39 821	46 153	52 539
Planned enrollment per new trial	136	495	291	374	252	194	210	140	112

From: Comprehensive analysis of the clinical immuno-oncology landscape

Ann Oncol. 2017;29(1):84-91. doi:10.1093/annonc/mdx755

Ann Oncol | © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Chen and Mellman. Immunity 2013; Hegde, et al. Clin Cancer Res 2016; Kim and Chen. Ann Oncol 2016; Chen and Mellman. Nature 2017

The "tumor immunome": the more we look, the more complex it gets

The Immune Landscape of Cancer

Vésteinn Thorsson,^{1,36,*} David L. Gibbs,^{1,35} Scott D. Brown,² Denise Wolf,³ Dante S. Bortone,⁴ Tai-Hsien Ou Yang,⁵ Eduard Porta-Pardo,^{6,7} Galen F. Gao,⁸ Christopher L. Plaisier,^{1,9} James A. Eddy,¹⁰ Elad Ziv,¹¹ Aedin C. Culhane,¹² Evan O. Paull,¹³ I.K. Ashok Sivakumar,¹⁴ Andrew J. Gentles,¹⁵ Raunag Malhotra,¹⁶ Farshad Farshidfar,¹⁷ Antonio Colaprico,¹⁸ Joel S. Parker,⁴ Lisle E. Mose,⁴ Nam Sy Vo,¹⁹ Jianfang Liu,²⁰ Yuexin Liu,¹⁹ Janet Rader,²¹ Varsha Dhankani,¹ Sheila M. Reynolds,¹ Reanne Bowlby,² Andrea Califano,¹³ Andrew D. Cherniack,⁸ Dimitris Anastassiou,⁵ Davide Bedognetti,²² Arvind Rao,¹⁹ Ken Chen,¹⁹ Alexander Krasnitz,²³ Hai Hu,²⁰ Tathiane M. Malta,^{24,25} Houtan Noushmehr,^{24,25} Chandra Sekhar Pedamallu,²⁶ Susan Bullman,²⁶ Akinvemi I. Oiesina,²⁷

Immunity 48, 812–830, April 17, 2018

What will come next?

Leveraging emerging technologies to enable "precision immuno-oncology"

Phenomic AI Retweeted

Pharma Tech Focus @PharmaTechFocus

Targeting the tumour stroma: @PhenomicAl launches with \$6m seed financing#targetingthetumourstroma #treatingsolidtumours #seedfinancing bit.ly/340yDy9

Al algorithm \rightarrow interrogate cell-cell interactions in tumor stroma \rightarrow drug screen → antibody candidates to disrupt tumor stroma and relieve obstacles to CPI action

individualized targets

response

biomarkers

toxicity

F. Barlesi et al, ESMO 2020

F. Barlesi et al, ESMO 2020

Understand, Predict and Overcome resistances to PD-(L)1i in adv. NCSLC pts

Understand and Predict: PIONeeR biomarkers trial

Tumor mutanome-derived neo-antigens as individualized vaccine targets

Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

U. Sahin et al, Nature 2017

BIONTECH

Tumor mutanome-derived neo-antigens as individualized vaccine targets

MIDRIX^{NEO}-LUNG NCT04078269

Suppressive lymphocytes and myeloid cells

Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma

Zaretsky et al, NEJM 2016

MHC/HLA class I baseline

relapse

Effective CPI-induced anti-tumor immune responses lead to loss of immunogenic clones

and tumor escape

Continued progression

I-O: IT ALL STARTS (AND ENDS) WITH IMMUNOLOGY...

DO WE REALLY UNDERSTAND HOW CPIS ACTUALLY WORK?

- "exhausted" cytotoxic T-lymphocytes are a dynamic, heterogenous family
- CPIs can only rescue one specific subset

Beltra et al, Immunity 2020

DO WE REALLY UNDERSTAND HOW CPIS ACTUALLY WORK?

CPI not only "re-awaken" exhausted T-cells but also recruit T-cell clones with novel specificity ("clonal replacement")

DO WE REALLY UNDERSTAND HOW CPIS ACTUALLY WORK?

the intestinal microbiome impacts therapeutic efficacy of CPIs

Vétizou et al. Science

2015

immunotherapy in melanoma patients Gopalakrishnan et al, Science 2017

The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients

Matson et al, Science 2018

Gut microbiome influences efficacy of **PD-1-based immunotherapy against** epithelial tumors Routy et al, Science 2018

Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota

Gut microbiome modulates response to anti-PD-1

CANCER IMMUNOTHERAPY BEYOND CPI : TAKE-HOME MESSAGES

STATE-OF-THE-UNION IN I-O TODAY:

- WE HAVE BIOMARKERS (they are so-so)
- WE HAVE COMBINATION REGIMEN (they still don't benefit the majority)
- WE ARE MOSTLY HELPLESS IN FRONT OF ACQUIRED RESISTANCE

WE NEED WAYS TO CAPTURE THE FULL COMPLEXITY OF THE **CANCER "IMMUNOME"** in a clinician-friendly way

- **"ONE SIZE FITS ALL" THERAPY COMBINATIONS?**
- **OR FULLY PATIENT-INDIVIDUALIZED?**
- WILL EVERY NEW COMBINATION REGIMEN REQUIRE ITS OWN COMPANION **BIOMARKER TEST**??

THANK YOU FOR YOUR ATTENTION!

