

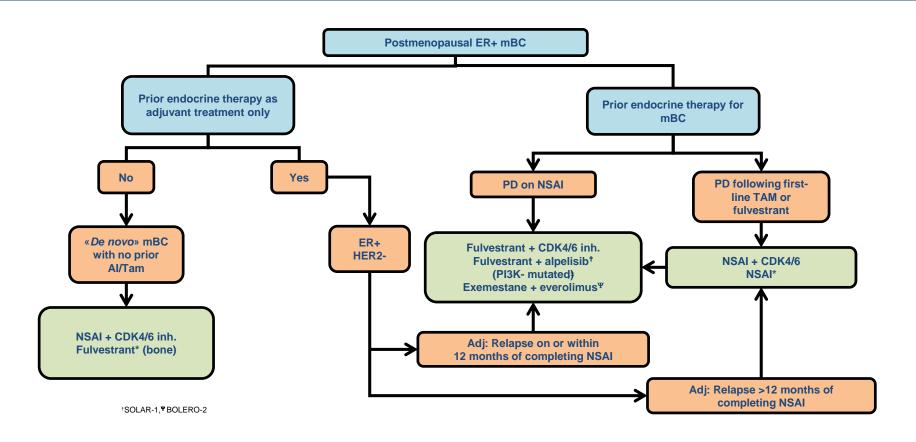
Progresses in Breast Cancer therapies changing Clinical Practice or Emerging

Ahmad Awada, MD, PhD
Head of Oncology Medicine Department
Institut Jules Bordet
Université Libre de Bruxelles (U.L.B.)
Brussels - Belgium

Disclosures

Advisory role, research grants to my Institute, Speaker fees:

Roche, Lilly, Amgen, EISAI, BMS, Pfizer, Novartis, MSD, Genomic Health, Ipsen, AstraZeneca, Bayer, Leo Pharma


Ten different molecular subtypes of Breast Cancer with therapeutic implications

- ER+ and/or PgR+ (70% of pts)
- ER+ and/or PgR+ and HER-2+ (triple positive)
- ER+ and/or PgR+ and PI3K-mutated (40% of pts)
- ER+ and/or PgR+ and BRCA-mutated
- HER2+ and HR- ± BRCA-mutated
- TNBC ± BRCA mutation
- TNBC + PD-L1 positive

Proposed therapeutic algorithm for luminal subtype MBC in 2020

Trials in advanced luminal disease of interest for clinical practice

Aim: Best endocrine partner with CDK4-6 inhibitor?

First line
« End. sensitive »
N = 486

Parsifal

Fulvestrant (F) +
palbo

Letrozole (L) +
palbo

Median PFS 28m (F) vs 33m (L)

- Failed to show superiority or non inferiority of F!
- Same dose intensity

Aim: Does Alpelisib work after CDK4-6 inhibitor?

Prior
CDK4-6
inh

Cohort A*
N = 112 Fulv + alpelisib

Cohort B
N = 112 Letrozole + alpelisib

* Median PFS 7.3m
Clinical benefit 45%
Discontinued for AE 20%
Benefit of prophyl antihistaminics
(70% w/o rash)
Results cohort B pending

CDK4/6i in HR+/HER2+ Disease MonarcHER Study

monarcHER STUDY DESIGN

Eligibility Criteria

- HR+, HER2+ ABC
- ≥2 prior HER2 directed therapies for ABC
- prior T-DM1 and taxane required
- CDK4 & 6 inhibitor/ fulvestrant naive
- No untreated or symptomatic CNS metastases

Stratification Factors:

- number of previous systemic regimens (2-3 vs. >3)
- measurable vs. nonmeasurable

Randomizati

on N = 237 1:1:1

Sample Size Calculations:

 165 PFS events give 80% power at 2-sided alpha of 0.20, assuming a HR of 0.667

Continue until PD

Arm A abemaciclib 150 mg PO BID + trastuzumab IV q21d + fulvestrant^a IM q28d

Arm B

abemaciclib 150 mg PO BID + trastuzumab IV q21d

Arm C

trastuzumab IV q21d + investigator's choice chemotherapyⁿ

Primary Endpoint

 PFS^c (A vs. C, then B vs. C)

Secondary Endpoint

 ORR, safety, OS, PRO, PK

Abbreviations: ABC = advanced breast cancer, HR+ = harmone receptor-positive, H(R2(+) = human epidermal growth factor receptor-2 (positive), n = number of patients, PD = progress disease, BID= twice daily, q21d=every 21 days, PFS = Progression Free Survival, ORR = Objective Response Rate, OS = Overall Survival, PRO = Patient Reported Outcomes, PK = pharmac 'Obscinger' Fluidstrant label

"Standardof-care single-agent chemotherapy should include approved drug in breast cancer. "Investigatorsssessed

Tolaney S et al.

This presentation is the intel 2019 property of the author/presenter. Contact them at shurvitz@mednet.ucla.edu for permission to reprint and/or distribute.

MONARCHER PRIMARY ENDPOINT: Arm A= abemaciclib + trastuzumab + fulvestrant PFS Arm B= abemaciclib + trastuzumab Arm C= trastuzumab + chemotherapy 2-sided Log-rank test HR median 100% 8.32 0.673 0.0506 (A vs. C) Arm B 5.65 0.943 0.7695 (B vs. C) 90% 5.69 Arm C 80% Progression-Free Survival 70% Statistically significant 60% improvement (Δ = 2.6 months A vs. C) in PFS at prespecified 2-50% sided alpha of 0.2 40% No PFS benefit observed for B 30% 20% 10% 0% 20 14 Time (months) Number at risk

Arm A

Almn B

April C

Tolaney S et al.

63

60

54

79

79

49

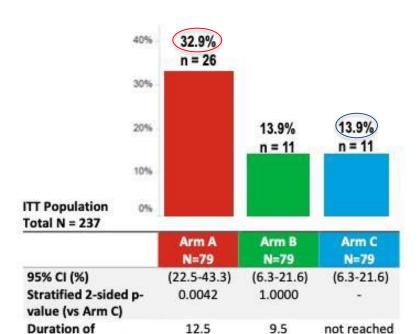
44

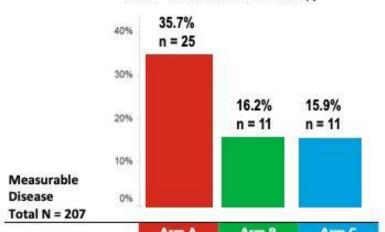
33

25

22

23


18


15

11

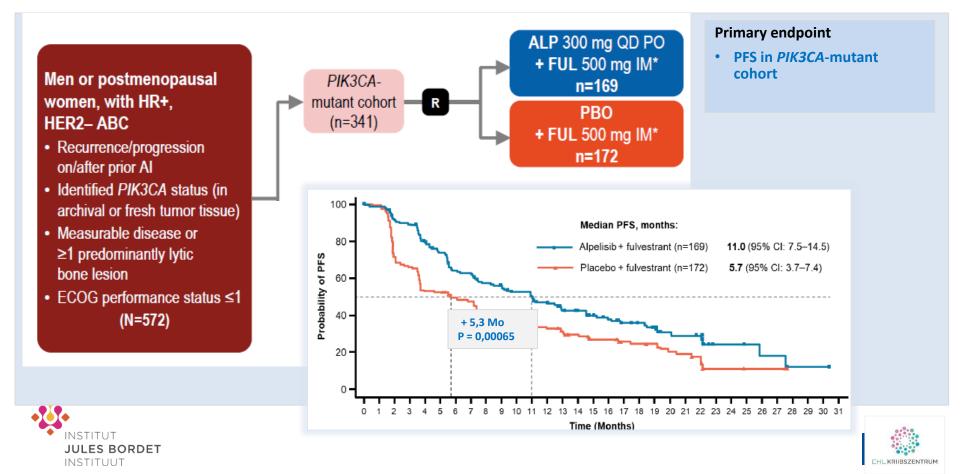
CONFIRMED BEST OVERALL RESPONSE RATE

Arm A= abemaciclib + trastuzumab + fulvestrant Arm B= abemaciclib + trastuzumab Arm C= trastuzumab + chemotherapy

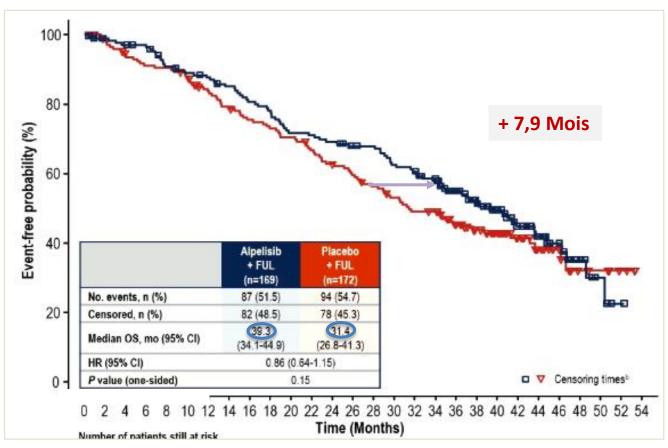
Arm A N=70	N=68	N=69
(24.5-46.9)	(7.4-24.9)	(7.3-24.6)
0.0111	1.0000	-
10.4	9.5	not reached
108960963	6000000	authorized Stellar
	N=70 (24.5-46.9) 0.0111	N=70 N=68 (24.5-46.9) (7.4-24.9) 0.0111 1.0000

Response, months

This presentation is the intelle20a19 operty of the author/presenter. Contact them at shurvitz@mednet.ucla.edu for permission to reprint and/or distribute.

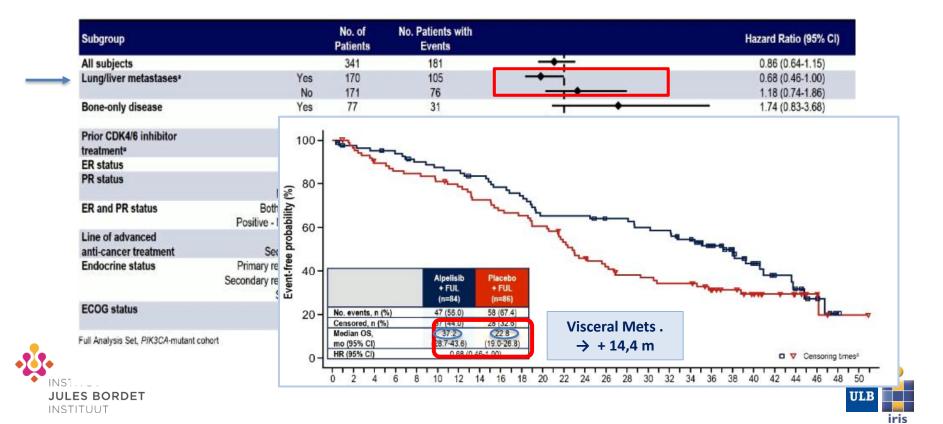


ALPELISIB + Fulvestrant in HR+, HER2- MBC Results of the phase III SOLAR-1 Trial



André F. et al ESMO 2018 - NEJM 2019

Overall Survival Results From SOLAR-1, a Phase 3 Study of Alpelisib + Fulvestrant for HR+, HER2- Advanced Breast Cancer

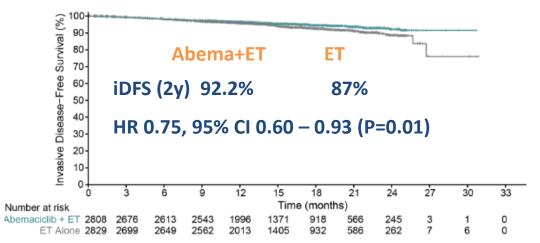


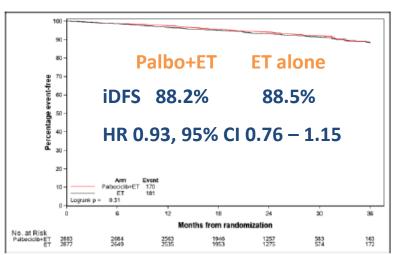
Overall Survival Results From SOLAR-1, a Phase 3 Study of Alpelisib + Fulvestrant for HR+, HER2- Advanced Breast Cancer

SOLAR-1: OS by Subgroups

MonarchE and PALLAS: Study characteristics

CHARACTERISTICS	MONARCHE	PALLAS		
Study drug (2y) Inclusion period	Abemaciclib 07/17 - 08/19	Palbociclib 09/15 - 11/18		
Stratification factors	Previous chemo Menopausal status Region	Stage II A vs IIB/III Chemo yes/no Age (50), Region		
Pts eligibility	LN + (≥4) or LN + (1-3) + T≥5cm or gr3 or ki67 ≥ 20%	Stage II – III		
Statistics	85% power for HR 0.73 5y IDFS 82,5% in control Arm (390 IDFS events)	85% power for HR 0.75 (IDFS)		
Interim analysis	50% of required events	1st futility (167 events) 2d futility (313 events) 469 IDFS for final analysis		





Abemaciclib (MONARCHE) and Palbociclib (PALLAS) in the Adjuvant Setting: Primary end point results

MonarchE IDFS (med FU: 15,5 mo.)

PALLAS IDFS (med FU: 23.7 mo)

Johnston SRD et al, JCO 2020, LBA5

Mayer, EL et al, ESMO 2020, LBA 12

Why do MonarchE and PALLAS results differ?

	MONARCHE	PALLAS
Selection of pts	More selective (100% high risk pts)	Less selective (60% high risk pts)
CDK 4/6 inh. features	Continuous therapy; Pan CDK inhibitor	Intermittent therapy CDK4/6
CDK4/6 discontinuation	16.6%	42%
CDK4/6 reduction	41%	89%
Sites of recurrence	Bone: 30 (Abem.) vs 53% (ET alone)	NA
	Visceral: 69 (Abem.) vs 59%	NA

Is abemaciclib a standard of care in EBC?

The decision to use adjuvant CDK4/6 inhibitor (Abemaciclib) therapy is more complex than the obtained results of iDFS with a median FU of only 15 months.

- OS data are important (awaited)
- More mature data of iDFS are important (at SABCS?)
- Qol and PROs are important
- Financial aspect is important

Nevertheless the results of Abemaciclib in high risk population are very encouraging.

HER-2 Positive Breast Cancer: Understanding the present, Moving to cure this disease ?!

Biomarkers (early FDG-PET) in HER2+ early disease: who can forego chemotherapy?

```
« Excellent responders » to
  Trastuzumab + Pertuzumab
         identified by
            FDG-PET
« Phergain » neoadjuvant trial
PET response (SUV \downarrow by \geq 40%)
    after 2# (= 80% of pts)
          pCR ≈ 40%
          ASCO 2020, abst 503
```


HER2+ BC: Optimizing neoadjuvant therapy Anthracyclines needed?

« Train 2 » Dutch trialN = 423 patients with stage II/III disease

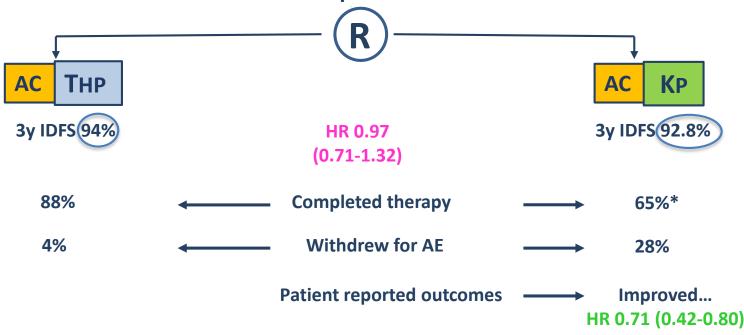
3y EFS HR 0.90 (0.50 - 1.63)

More **↓** in LVEF with 11% stopping H early

and 2 acute leukemias

ASCO 2020 - abst 501

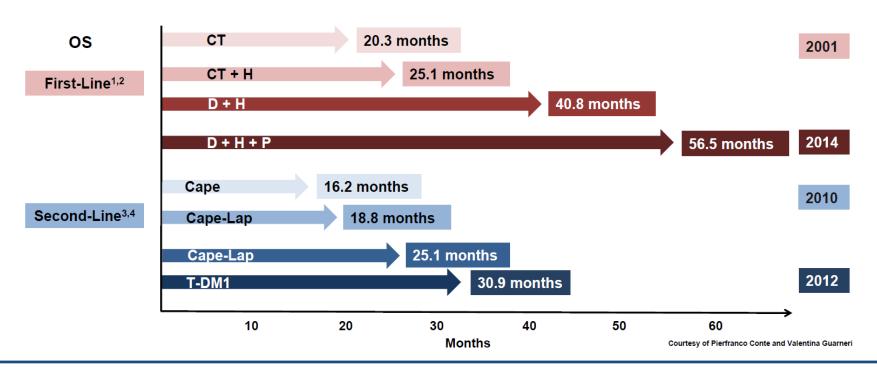
* Paclitaxel weekly d1+8; carbo AUC 6 q3wks


KATHERINE STUDY: Role of T-DM1 in residual disease following neoadjuvant therapy = Standard of care

HER2+ BC: Results of Adjuvant T-DM1 replacing taxane

« Kaitlin » : N = 1846 « high risk patients » (90% N+)
Median fup 57 months

*! 18 cycles of T-DM1 planned


T = taxane, K = T-DM1

ASCO 2020 - abst 500

Treatment of HER2-positive MBC Progress Over Time

Cape, capecitabine; CT, chemotherapy; D, docetaxel; H, trastuzumab; Lap, lapatinib; OS, overall survival; P, pertuzumab; T-DM1, trastuzumab emtansine

1. Slamon D, et al. N Engl J Med. 2001;15(1);344:783-792. 2. Swain S, et al. N Engl J Med. 2015;372(8):724-734. 3. Geyer C, et al. N Engl J Med. 2006;355:2733-2743.

4. Verma S, et al. N Engl J Med. 2012;367(19):1783-1791.

Progress on the clinical Management of HER2 Positive advanced Breast cancer in 2020

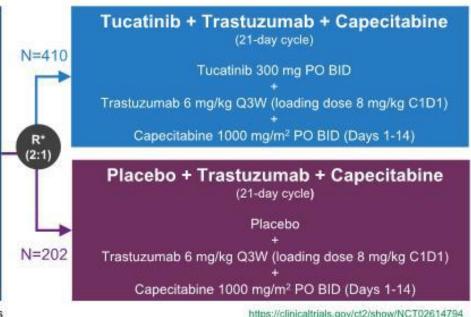
- New HER2 agents in ABC
 - Neratinib (NALA)
 - Tucatinib
 - Pyrotinib
 - Trastuzumab Deruxtecan (DS-8201)
- Perspectives
 - Antibody drugs conjugates (high and <u>low</u> HER2 expressors!)

New HER2-TKIs for advanced disease

Potent HER2 TKI with minimal EGFR inhibition

Pyrotinib

Potent Pan-ErbB receptor TKI (HER1-2-4)


Tucatinib in HER2+ MBC ± Brain metastases

HER2CLIMB Trial Design

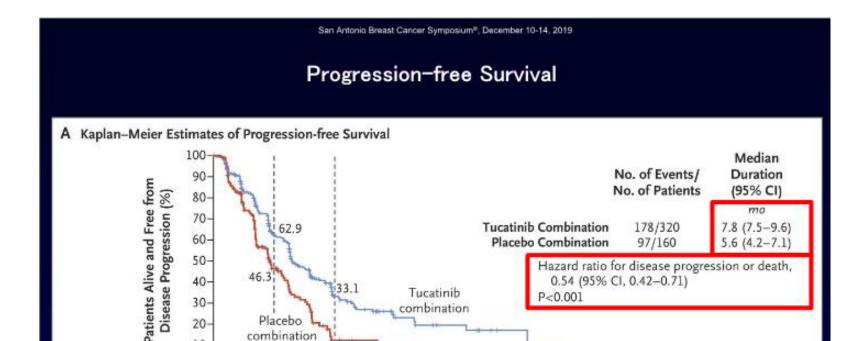
Key Eligibility Criteria

- · HER2+ metastatic breast cancer
- Prior treatment with trastuzumab. pertuzumab, and T-DM1
- ECOG performance status 0 or 1
- Brain MRI at baseline
 - Previously treated stable brain metastases
 - Untreated brain metastases not needing immediate local therapy
 - · Previously treated progressing brain metastases not needing immediate local therapy
 - · No evidence of brain metastases

*Stratification factors: presence of brain metastases (yes/no), ECOG status (0 or 1), and region (US or Canada or rest of world)

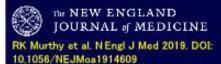
This presentation is the intellectual property of the author/presenter. Contact them at murthy1@mdanderson.org for permission to reprint and/or distribute.

HER2 CLIMB


Key Baseline Demographics and Disease Characteristics

		Total Population, N=612			
Characteristic, n (%)		TUC+Tras+Cape n=410	Pbo+Tras+Cape n=202		
Female		407 (99)	200 (99)		
Age (years), median (range)		55.0 (22, 80)	54.0 (25, 82)		
ECOG performance status	0	204 (50)	94 (47)		
	1	206 (50)	108 (54)		
Stage IV at initial diagnosis		143 (35)	77 (39)		
	ER and/or PR-positive	243 (60)	127 (63)		
Hormone receptor status	ER and PR-negative	161 (40)	75 (37)		
Prior lines of therapy, median	Overall	4.0 (2, 14)	4.0 (2,17)		
(range)	Metastatic setting	3.0 (1, 14)	3.0 (1, 13)		
Presence/history of brain metas	tases	198 (48)	93 (46)		
Treated, stable		118 (59.6)	55 (59.1)		
Untreated		44 (22.2)	22 (23.7)		
Treated, progressing		36 (18.2)	16 (17.2)		

Baseline characteristics were balanced between endpoint populations and treatment arms



ORR: 41% (tucatinib) vs. 23% (placebo)

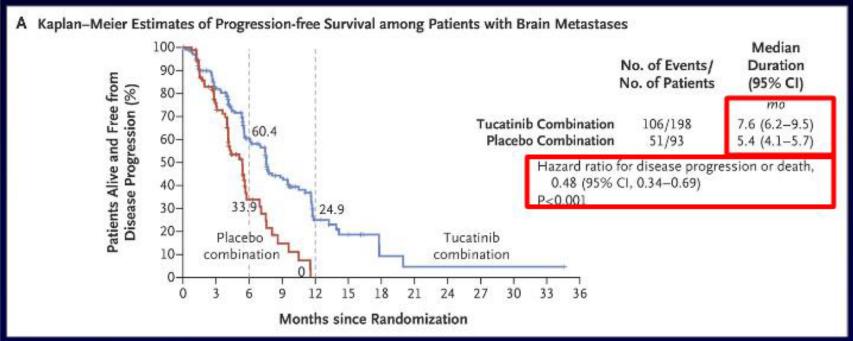
Months since Randomization

27

20-

10-

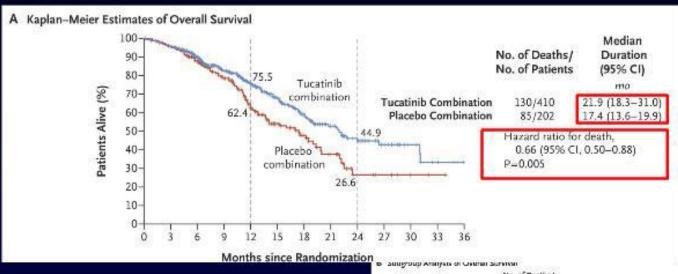
combination


12.3

This presentation is the intellectual property of the author/presenter. Contact them at shurvitz@mednet.ucla.edu for permission to reprint and/or distribute.

Progression-free Survival among the Patients with Brain Metastases

RK Murthy et al. N Engl J Med 2019. DOI: 10.1056/NEJMoa1914609

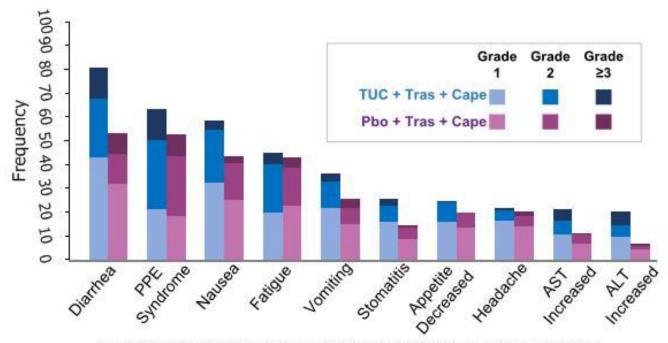

This presentation is the intellectual property of the author/presenter. Contact them at shurvitz@mednet.ucla.edu for permission to reprint and/or distribute.

San Antonio Breast Cancer Symposium®, December 10-14, 2019

Overall Survival in the Total Population and Prespecified Subgroups.

Subgroup	No. of Deaths/ Total No.	Hazard Ratio for Death (95% CI)	
ctal	215/612	H=-1	0.45 (0.50-0.83)
Age		1	
2-65 yr	557036		0.58 (0.52-1.06)
-063 yr	162/456	H	0.60 (0.50-0.95)
Race			
White	160/444	H=-1	0.40 (0.50-0.90)
Nonwhitz	55/168	<u></u>	0.51 (0.28-0.93)
Hormone-receptor status		A1 21 11 11 11 11 11 11 11 11 11 11 11 11	
Program for Eff, 2ff, or both	128/370	1	0.85 (0.50-1.23)
Negative for ER and PR	87/242	J—4—1	0.50 (0.31 -0.80)
Baseline brain metasticus			
Yes	114/251	1-0-1	0.55 (0.40-0.85)
No	101/319	-	0.72 (0.48 1.08)
роска реполизности алистина			
C	\$1/298	1-4-1	0.51 (0.33 0.80)
1	(34/314	H-0-H	0.81 (0.59-1.20)
Geographic region			
United States and Canada	138/309	-	0.65 (0.48, 0.95)
literal of the world	67/243		0.61 (0.30-1.03)
		0.1 10 10	
		- -	
		Tucatinib Combination Placebo Combination Better Better	i

The NEW ENGLAND JOURNAL of MEDICINE


RK Murthy et al. N Engl J Med 2019. DOI: 10,1056/NEJMoa1914609

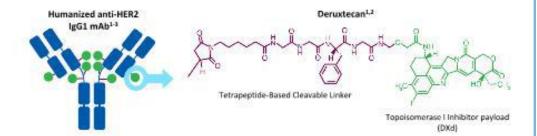
This presentation is the intellectual property of the author/presenter. Comact them at snot vizionne unequality of the author/presenter.

Most Common Adverse Events (≥20% in the Tucatinib Arm)

PPE: palmar-plantar erythrodysesthesia, AST: aspartate transaminase, ALT: alanine transaminase

New Antibody drug conjugates (ADCs) targeting HER2

Agent	Target	Phase of development	Initial Phase I Results	Main Side Effects	
DS8201a ¹	Humanized HER2 antibody + topoisomerase-I inhibitor exatecan	Ongoing phase II (DESTINY-Breast01) and III (NCT03529110)	PFS:10.4 mo. (heavily pretreated patients)	Gastrointestinal and haematological	
SYD985 ²	Trastuzumab + duocarmazine	Ongoing phase III (TULIP)	RR: 33% ² PFS: 9.4 mo.	Ophthalmologic effects (conjunctivitis and keratitis)	
RC48- ADC ³	HER2 antibody + MMAE	Ongoing phase II (NCT03500380)	RR: 36.7%	Transaminases elevations Neutropenia	



Trastuzumab Deruxtecan (DS-8201) is a Novel ADC Designed to Deliver an Optimal Antitumor Effect

Trastuzumab deruxtecan is an ADC composed of 3 components:

- A humanized anti-HER2 IgG1 mAb with the same amino acid sequence as trastuzumab
- A topoisomerase I inhibitor payload, an exatecan derivative
- A tetrapeptide-based cleavable linker

Payload MOA: topoisomerase I inhibitor

High potency of payload

High drug to antibody ratio ≈ 8

Payload with short systemic half-life

Stable linker-payload

Tumor-selective cleavable linker

Membrane-permeable payload

56

The clinical relevance of these features is under investigation

ADC, antibody-drug conjugate; MOA, mechanism of action.

1. Nakada T, et al. Chem Pharm Bull (Tokyo), 2019;67(3):173-185. 2. Ogitani V, et al. Clin Cancer Res. 2016;23(20):5097-5108. 3. Trail PA, et al. Pharmacol Ther. 2018;181:126-142. 4. Ogitani V, et al. Cancer Sci. 2016;107(7):1039-1046.

This presentation is the intellectual property of the author/presenter. Contact them atroo Spartners or for permission to reprint and/or distribute.

DESTINY-Breast01 Study Design:

Population

tissue)

allowed

Prior T-DM1

≥18 years of age

 Unresectable and/or metastatic BC

confirmed on archival

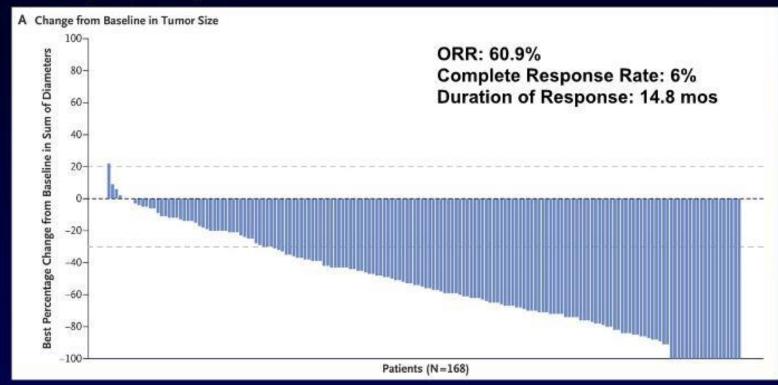
Excluded patients with

Stable, treated brain

metastases were

An Open-Label, Multicenter, Phase 2 Study

PART 1 PART 2 **Dose-Finding Stage** PK Stage **Continuation Stage** (n=65) (n=134) (n=54) T-DM1 5.4 mg/kg HER2-positive (centrally Resistant/Refractory (n=22) 5.4 mg/kg (n=249) PART 2a (n=28) 6.4 mg/kg 5.4 mg/kg (n=22) (n=130) 6.4 mg/kg (n=26) 7.4 mg/kg (n=21) history of significant ILD T-DM1 PART 2b Endpoints Intolerant 5.4 mg/kg Primary: confirmed ORR by independent central imaging (n=4)facility review per RECIST v1.1 184 patients Secondary: investigator-assessed ORR, DCR, DOR, CBR, enrolled at 5.4 mg/kg PFS, OS, PK and safety


Baseline Characteristics of Note

- 53% HR positive
- HER2 IHC 3+ 84%; 1+/2+ (FISH+) 16%
- 92% visceral disease; 13% h/o brain metastases
- Median 6 prior lines of therapy (range 2-27)

Response to Trastuzumab Deruxtecan, According to Tumor Size and Subgroup Analyses.

S Modi et al. N Engl J Med 2019. DOI: 10.1056/NEJMoa1914510

This presentation is the intellectual property of the author/presenter. Contact them at shurvitz@mednet.ucla.edu for permission to reprint and/or distribute.

Trastuzumab Deruxtecan

Adverse Events of Special Interest: Interstitial Lung Disease

Preferred Term, n (%)	Patients who received T-DXd 5.4 mg/kg (N=184)					
	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade/ Total
Interstitial lung disease	5 (2.7)	15 (8.2)	1 (0.5)	0	4 (2.2)	25 (13.6)

Drug related; ILD was determined by the Independent ILD Adjudication Committee based on a conferred terms.

Among the 25 total events:

- Median time to investigator-reported onset was 193 days (range, 42-535 days)
- Of the 4 fatal cases, onset was from 63-148 days, 3 received steroids as part of treatment, and death occurred 9-60 days after ILD diagnosis

Recommendations: Monitor for symptoms. Hold T-DXd and start steroids as soon as ILD is suspected

ILD, interstitial lung disease.

III. Triple Negative Breast Cancer Disease

Progresses on the management of Triple Negative Breast Cancer in 2020

- More on the benefit of adjuvant capecitabine in TNBC
- Checkpoints inhibitors-based combination on the neoadjuvant setting
- Update on the role of CPIs in the metastatic setting
- Perspectives
 - Antibody drugs conjugates (Sacituzumab Govitecan)

SYSUCC01 Adjuvant capecitabine trial in early TNBC

Chinese group trial – N = 443 st IIb \rightarrow IIIc after completion of « standard » adj CTX/RT Median follow-up = 57 m « Metronomic » Capecitabine* Observation 650 mg/m 2 continuously X 1_y — 5y DFS —— HR 0.63 (0.42 - 0.96)**DDFS** HR 0.63 (0.37 - 0.90)

^{*} Completed therapy 91%, med dose intensity 85%, H&F syndrome 45% (17% gr3)

Neoadjuvant Chemo-Immunotherapy in TNBC A summary

n= 602 (pCR Anal.)

Carboplatin

Patients

N+ 51.7% / 51.3% T3/T4

PD-L1 pos. 83.3% / 81.6 % (CPS≥1)

Primary Endpoints

yes

26.0% / 25.6%

pCR in ITT, EFS

pCR ITT 64,8% / 51;2% **Δ13**;6% pCR PD-L1pos. 68.9% / 54.9% A 14% pCR PD-L1neg. 45.3% / 30.3% \(\Delta \) 15%

LN+ 64.8% / 44.1% \(\triangle 20.7\) LN-64.9% / 58.6% \(\Delta \) 6.3

Impassion 031 Atezo / Placebo

n= 333 (after Amendment)

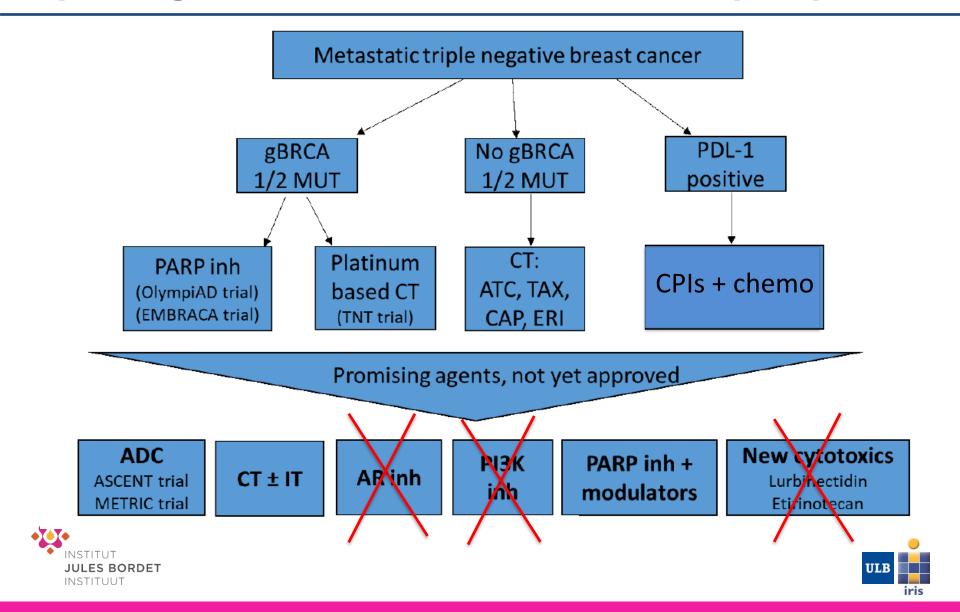
no

33.9% / 42.9% 29.7% / 26.8%

45.2% / 47.3%(IC ≥ 1%)

Co-Primary: pCR in ITT and PD-L1 pos.

57;6%/41.1% Δ16.5% 68.8% / 49.3% A 19.5%


47.7% / 34.3% △ **13.3%**

57.1% / 30.6% A 26.5% 57.8% / 49.0% \(\triangle 8.8\)

Current standard-of-care treatments in metastatic triple-negative breast cancer and future perspective

Chemo ± CPIs in metastatic TNBC: A summary

	VIRTUAL ESMOCOTIGESS	MUNICH ESVO	ASCO20 Virtual	
PDL1+ subsets	IMpassion 131	IMpassion 130	KEYNOTE 355	
N	292	369	323 (2:1)	
Minimum DFI	12m	12m	6m (20% < 12m)	
> 3 involved sites	15%	20%	43% (≥ 3)	
Chemo backbone	paclitaxel	nab paclitaxel	nab paclitaxel, paclitaxe gem/carbo	
Prior chemo for EBC	52% taxane	51% taxane	22% prior same class	
No prior chemo	29% de novo	35% chemo-naive	32% de novo	
PDL1+ rate	45% (SP142, IC≥1%)	41% (SP142, IC≥1%)	38% (22C3, CPS≥10)	
	PFS ≈ OS ≤	PFS 个 « OS 个 »	PFS ↑	

Question de corticoïdes? Type de chimiothérapie ? Taxol vs Nab PacliT ?

Sacituzumab Govitecan

Sacituzumab Antibody-Drug Conjugate (ADC)

Humanized RS7 antibody

Targets Trop-2, an epithelial antigen expressed on many solid cancers, including mTNBC

SN-38 payload

- Targets 136-fold more SN-38 than the parent compound, irinotecan (topoisomerase I inhibitor)
- ADCs unique chemistry avoids low solubility and selectively delivers SN-38 to the tumor

Linker for SN-38

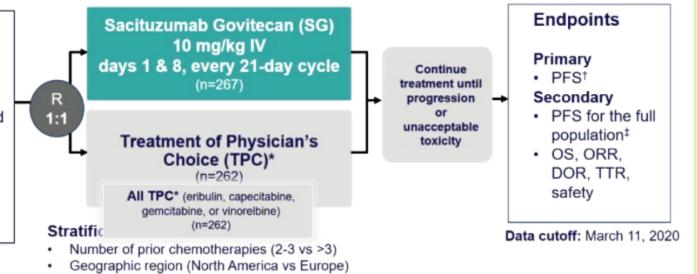
- High drug-to-antibody ratio (7.6:1)
- pH-sensitive linker for rapid payload release at or inside the tumor

5

This presentation is the intellectual property of the author/presenter. Contact them at shurvitz@mednet.ucla.edu for permission to reprint and/or distribute.

ASCENT: A Phase 3 Confirmatory Study of Sacituzumab Govitecan in Refractory/Relapsed mTNBC

Presence/absence of known brain metastases (yes/no)

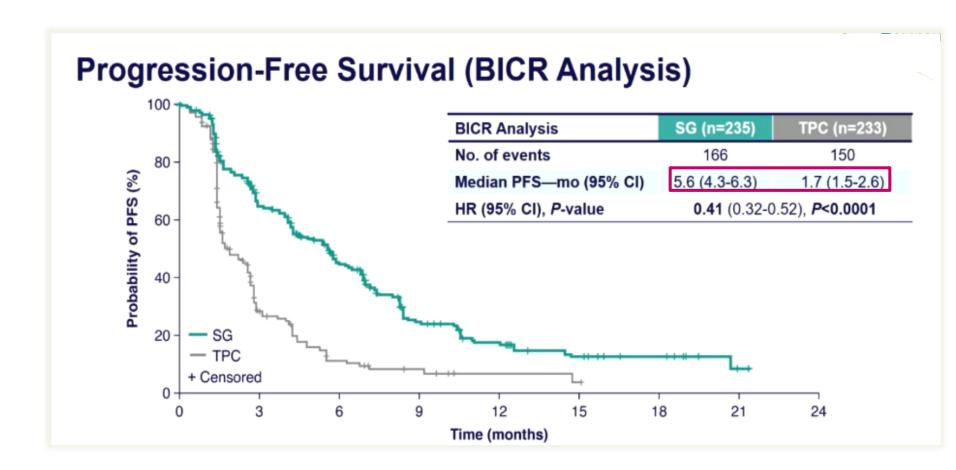

Metastatic TNBC (per ASCO/CAP)

⇒≥2 chemotherapies for advanced disease

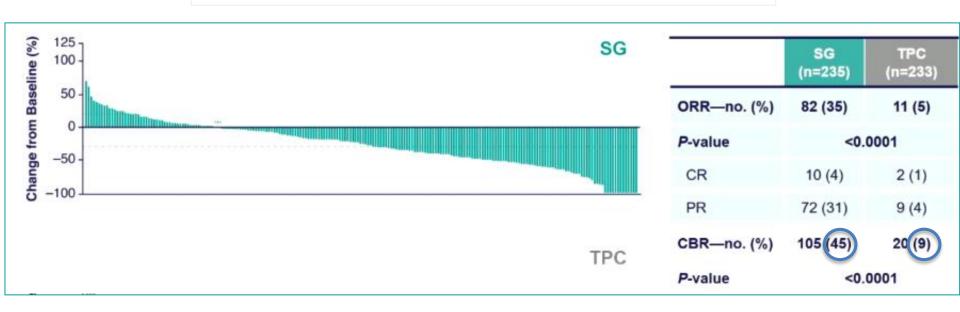
[no upper limit; 1 of the required prior regimens could be progression occurred within a 12-month period after completion of (neo)adjuvant therapy)]

N=529

NCT02574455

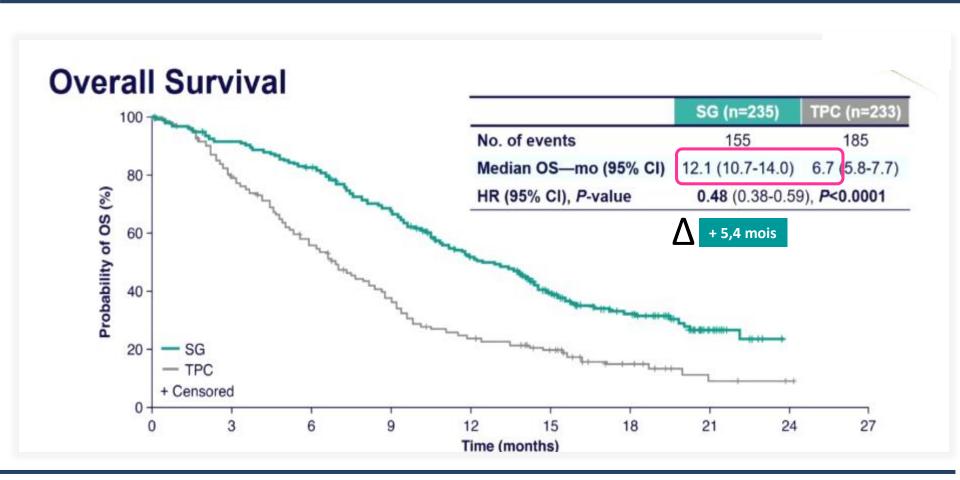


CENT (Sacituzumab Govitecan)



CENT (Sacituzumab Govitecan)

Overall Response and Best Percent Change From Baseline in Tumor Size



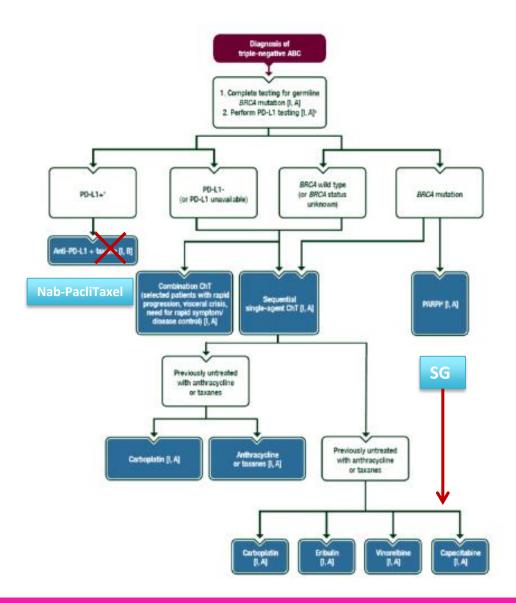
(Sacituzumab Govitecan)

Sacituzumab Govitecan)

TRAEs (All Grade, >20%; Grade 3/4, >5% of Patients)

		SG (n=258)		TPC (n=224)			
	TRAE*	All grade %	Grade 3, %	Grade 4, %	All grade, %	Grade 3, %	Grade 4, %
	Neutropenia†	63	46	17	43	27	13
Hematologic	Anemia [‡]	34	8	0	24	5	0
Hematologic	Leukopenia§	16	10	1	11	5	1
	Febrile neutropenia	6	5	1	2	2	<1
	Diarrhea	59	10	0	12	<1	0
Gastrointestinal	Nausea	57	2	<1	26	<1	0
	Vomiting	29	1	<1	10	<1	0
Other	Fatigue	45	3	0	30	5	0
	Alopecia	46	0	0	16	0	0

→ Arrêt = 4,7 %



Algorithme mTNBC - ABC 5

Cardoso F, Annals Oncol online

DNA damage response pathway genes

Progress on the management of gBRCA mutated Breast Cancer in 2020

- Role of PARP inhibitors
 - as single agents (olaparib, talazoparib)
 - in combination (veliparib)
- Therapeutic strategy in gBRCA-mutated breast tumors?

BC with mutations in DNA damage response genes

Embraca trial (Talazoparib vs CTX of physician's choice)
Little impact of any mutation beyond gBRCA1-2 mutation

- P53 mut (gBRCA1) : do worse
- PIK3 CA mut (gBRCA2): no difference

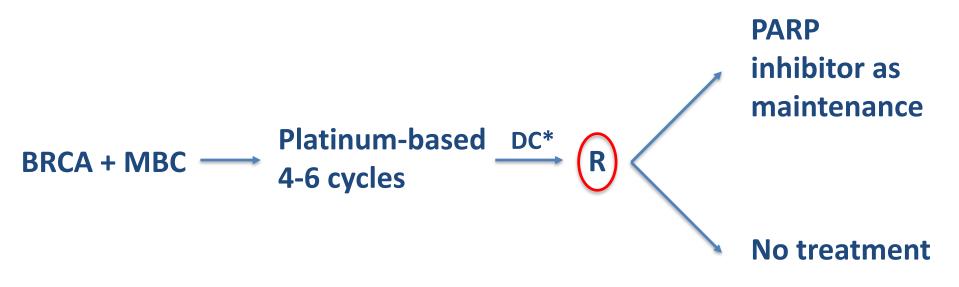
TBCRC 048 « Olaparib expanded »

Cohort of germline or somatic mutations beyond gBRCA

	PALB2 (N = 13)	ATM/CHEK2 (N = 17)	BRCA1-2 (N = 17)
Germline	82% RR	0/13	-
Somatic	Too few	0/4	50% RR

ASCO 2020 - abst P1018, 1002

Proposition for a clinical trial design including platinum compounds and PARP inhibitors in BRCA+ metastatic breast cancer


BRCA+ MBC ® Platinum-based PD PARP inhibitor

* Progressive disease

Proposition for a clinical trial design including platinum compounds and PARP inhibitors in BRCA+ metastatic breast cancer (2)

*Disease Control

Genomic Aberrations in Breast Cancer That Guide Precision Medicine: An Evolving Field

Gene	Aberration	Aberration, %	Targeted Drug(s)
Evidence based (from phase II or III trials)			
HER2	Amplification	20	Trastuzumab, pertuzumab, T-DM1, lapatinib, neratinib
HER2	Activating mutations (nonamplified HER2)	2	
PIK3CA	Activating mutations	30-40	Alpelisib
BRCA1/2	Inactivating germline mutations	5	Olaparib, talazoparib
NTRK	Gene fusion	< 1	Larotrectinib
PD-L1	Expression by IHC	40	Atezolizumab + nab-paclitaxel
Emerging			
ESR1	Mutations	30-40	Fulvestrant, other SERDs
PTEN	Inactivating mutations or methylation	20	PI3K, AKT, and mTOR inhibitors
MYC	Amplification	16	BET inhibitors
C-MET	Amplification or mutation	15	MET inhibitors (cabozantinib)
FGFR1-4	Amplification	10	FGFR inhibitors
CDH1	Inactivating mutations	7	Wnt inhibitors
AKT	Activating mutations	2	AKT and mTOR inhibitors (MK-2206, everolimus

Thank you

