Immunotherapy in upper GI cancers

14th Belgian Symposium on the Integration of Molecular Biology Advances into Oncology Clinical Practice and Post-MASCC, 27/11/2020

> Willem Lybaert, MD Medical Oncologist AZ Nikolaas - AZ Lokeren - UZA

Esophageal - gastric cancer anno 2020

• Current therapies that we are using:

- Cisplatinum/carboplatinum 5-FU de Gramont +/- trastuzumab
- Modified FOLFOX
- Paclitaxel + ramucirumab
- Docetaxel
- Ramucirumab monotherapy
- Modified FOLFIRI
- Trifluridine-tipiracil (= Lonsurf[®]) recently reimbursed in Belgium
- Immunotherapy: unclear position in first-line gastric cancer; in second- and third-line gastric-esophageal cancer, there is a benefit in the Asian population, MSI-high group, PD-L1 CPS-score ≥ 10 and TMB-high group...

ESMO 2020 and esophageal - gastric cancer

Nivolumab has shown already a significant survival benefit for heavily pretreated patients with advanced or recurrent (advanced) gastric/gastroesophageal junction (G/GEJ) cancer: ATTRACTION-2

ESMO 2020 esophagus-stomach: immunotherapy

Nivolumab plus chemotherapy versus chemotherapy as first-line treatment for advanced gastric cancer/gastroesophageal junction cancer/esophageal adenocarcinoma: first results of the CheckMate 649 study

Markus Moehler,¹ Kohei Shitara,² Marcelo Garrido,³ Pamela Salman,⁴ Lin Shen,⁵ Lucjan Wyrwicz,⁶ Kensei Yamaguchi,⁷ Tomasz Skoczylas,⁸ Arinilda Campos Bragagnoli,⁹ Tianshu Liu,¹⁰ Michael Schenker,¹¹ Patricio Yanez,¹² Mustapha Tehfe,¹³ Valerie Poulart,¹⁴ Dana Cullen,¹⁴ Ming Lei,¹⁴ Kaoru Kondo,¹⁴ Mingshun Li,¹⁴ Jaffer A. Ajani,¹⁵ Yelena Y. Janjigian¹⁶

¹Johannes-Gutenberg University Clinic, Mainz, Germany; ²National Cancer Center Hospital East, Kashiwa, Japan; ³Clinica San Carlos de Apoquindo, Pontificia Universidad Católica, Chile; ⁴Fundación Arturo López Pérez, Providencia, Chile; ⁵Beijing Cancer Hospital, Beijing, China; ⁶Klinika Onkologii i Radioterapii, Narodowy Instytut Onkologii, Warszawa, Poland; ⁷Cancer Institute Hospital of JFCR, Tokyo, Japan; ⁸II Klinika Chirurgii Ogólnej, Gastroenterologicznej i Nowotworów Układu Pokarmowego, Medical University of Lublin, Lublin, Poland; ⁹Fundacao Pio Xii Hosp Cancer De Barretos, Barretos, Brazil; ¹⁰Zhongshan Hospital Fudan University, Shanghai, China; ¹¹SF Nectarie Oncology Center, Craiova, Romania; ¹²Universidad de La Frontera, Temuco, Chile; ¹³Oncology Center - Centre Hospitalier de l'Universite de Montreal, Montreal, QC, Canada; ¹⁴Bristol Myers Squibb, Princeton, NJ, USA; ¹⁵The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁶Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA

CheckMate 649 study design

CheckMate 649 is a randomized, open-label, phase 3 study^a

• At data cutoff (May 27, 2020), the minimum follow-up was 12.1 monthsh

^aClinicalTrials.gov number, NCT02872116; ^b< 1% includes indeterminate tumor cell PD-L1 expression; determined by PD-L1 IHC 28-8 pharmDx assay (Dako); ^cAfter NIVO + chemo arm was added and before new patient enrollment in the NIVO1+IPI3 group was closed; ^dUntil documented disease progression (unless consented to treatment beyond progression for NIVO + chemo), discontinuation due to toxicity, withdrawal of consent, or study end. NIVO is given for a maximum of 2 years; ^eOxaliplatin 130 mg/m² IV (day 1) and capecitabine 1000 mg/m² orally twice daily (days 1-14); ^fOxaliplatin 85 mg/m², leucovorin 400 mg/m², and FU 400 mg/m² IV (day 1) and FU 1200 mg/m² IV daily (days 1-2); ^gBICR assessed; ^hTime from concurrent randomization of the last patient to NIVO + chemo vs chemo to data cutoff.

Baseline characteristics

	PD-L1 CPS ≥ 5			
	NIVO + chemo (n = 473)	Chemo (n = 482)		
Median age (range), years	63 (18-88)	62 (23-90)		
Male, %	70	72		
Non-Asian/Asian, %	75/25	76/24		
ECOG PS 1, %	59	58		
Primary tumor location, %				
GC	70	69		
GEJC	18	18		
EAC	12	13		
Metastatic disease, %	96	96		
Liver metastases, %	40	45		
Signet ring cell carcinoma, %	15	14		
MSI status,ª %				
MSS	89	88		
MSI-high	4	3		
FOLFOX/XELOX received on study, ^b %	51/49	52/48		

• The distribution of baseline characteristics was consistent with that of all randomized patients

^aMSI status was not reported or invalid for 75 patients; ^bAll treated patients with PD-L1 CPS ≥ 5: NIVO + chemo, n = 468 and chemo, n = 465.

Overall survival

Primary endpoint (PD-L1 CPS ≥ 5)

 Superior OS, 29% reduction in the risk of death, and a 3.3-month improvement in median OS with NIVO + chemo versus chemo in patients whose tumors expressed PD-L1 CPS ≥ 5

^aWinimum follow-up 12.1 months.

Overall survival

Superior OS benefit in PD-L1 CPS ≥ 1 and all randomized patients with NIVO + chemo versus chemo

^aWinimum follow-up 12.1 months.

Progression-free survival

- Superior PFS, 32% reduction in the risk of progression or death with NIVO + chemo versus chemo in patients whose tumors expressed PD-L1 CPS ≥ 5
- PFS benefit with NIVO + chemo versus chemo in PD-L1 CPS ≥ 1 and all randomized patients

^aPer BICR assessment; ^bMinimum follow-up 12.1 months.

Summary

- NIVO is the first PD-1-inhibitor to demonstrate superior OS and PFS in combination with chemo versus chemo alone in previously untreated patients with advanced GC/GEJC/EAC
 - Statistically significant and clinically meaningful OS benefit in patients whose tumors expressed PD-L1 CPS ≥ 5 and ≥ 1 and in all randomized patients
 - Survival benefit across multiple pre-specified subgroups (assessed in primary population)
 - PFS benefit in PD-L1 CPS ≥ 5 (statistically significant), PD-L1 CPS ≥ 1, and all randomized patients
- No new safety signals were identified with NIVO + chemo
- NIVO + chemo represents a new potential standard 1L treatment for patients with advanced GC/GEJC/EAC

domised patient	 Secondary endpoints: PD-L1 CPS≥1 and all rando 		5	CheckMate 649	
-	p value	Δ	Hazard Ratio	n	
· · · · ·	< 0.0001	3.3	0.71 (0.59-0.86)	953	CPS≥5
> 70% CPS ≥ 5	0.001	2.7	0.77 (0.64-0.92)	1296	CPS≥1
> 60% CPS ≥ 5	0.002	2.2	0.80 (0.68-0.94)	1581	All patient

Z Nikolaas

Top zorg, warm hart

Nivolumab plus chemotherapy versus chemotherapy alone in patients with previously untreated advanced or recurrent gastric/ gastroesophageal junction (G/GEJ) cancer: ATTRACTION-4 (ONO-4538-37) study

N. Boku¹, M.H. Ryu², D.-Y. Oh³, S.C. Oh⁴, H.C. Chung⁵, K.-W. Lee⁶, T. Omori⁷, K. Shitara⁸, S. Sakuramoto⁹, I.J. Chung¹⁰, K. Yamaguchi¹¹, K. Kato¹, S.J. Sym¹², S. Kadowaki¹³, K. Tsuji¹⁴, J.-S. Chen¹⁵, L.-Y. Bai¹⁶, L.-T. Chen¹⁷, Y.-K. Kang²

¹Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan, ²Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea, ³Department of Internal Medicine, College of Medicine, Korea University, Seoul, National University Hospital, Seoul, South Korea, ⁴Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea, ⁵Division of Medical Oncology, Yonsei Cancer Center, Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea, ⁶Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea, ⁷Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan, ⁶Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan, ⁹Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan, ¹⁰Department of Gastroenterology Chonnam National University Hwasun Hospital, Chonnam National University College of Medicine, Hwasun, South Korea, ¹¹Department of Gastroenterological Center, Hidaka, Japan, ¹⁰Department of Gastroenterological Chemotherapy, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan, ¹²Department of Internal Medicine, Division of Medical Oncology, School of Medicine, Gachon University Gil Medical Center, Incheon, South Korea, ¹⁵Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan, ¹⁶Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, National Central Hospital, Kanazawa, Japan, ¹⁵Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Nati

Phase 3 part of ATTRACTION-4: Study Design

 Phase 3 part of ATTRACTION-4 is a double-blind, randomized controlled study conducted at 130 centers in Japan, Korea, and Taiwan^a

- At data cutoff for interim analysis of PFS (31 Oct 2018), the median follow-up period was 11.6 months
- At data cutoff for final analysis of OS (31 Jan 2020), the median follow-up period was 26.6 months
- A total of 724 patients were randomized between Mar 2017 and May 2018

^aClinicalTrials.gov Identifier: NCT02746796,

7 Nikolaas

op zorg, warm hart

bSOX : S-1 (tegafur-gimeracil-oteracil potassium) 40 mg/m² orally twice daily (days 1–14) and Oxaliplatin 130 mg/m² IV (day 1), q3w

CapeOX : Capecitabine 1000 mg/m² orally twice daily (days 1-14) and Oxaliplatin 130 mg/m² IV (day 1), q3w

Progression-Free Survival (Interim Analysis)

	Nivolumab + Placebo + Chemotherapy Chemothera N = 362 N = 362		
Median PFS, months (95% CI)	10.45 (8.44-14.75)	8.34 (6.97-9.40)	
Hazard ratio (98.51% CI)	0.68 (0.51-0.90)		
<i>P</i> value	0.0007		
1yr PFS rate (%)	45.4 30.6		

Data cut off: 31 Oct 2018 at interim analysis

At Risk

Overall Survival (Final Analysis)

	Nivolumab + Chemotherapy N = 362	Placebo + Chemotherapy N = 362	
Median OS, months	17.45	17.15	
(95% CI)	(15.67-20.83)	(15.18-19.65)	
Hazard ratio	0.90		
(95% CI)	(0.75-1.08)		
<i>P</i> value	0.257		

Data cut off: 31 Jan 2020 at final analysis

At Risk

Summary and Conclusion

- NIVO + Chemo demonstrated a statistically significant improvement in PFS, but not in OS
 - Higher overall response rates and more durable responses
- The pre-specified objective of the phase 3 part of ATTRACTION-4 was achieved, showing clinically meaningful efficacy
- NIVO + Chemo demonstrated a manageable safety profile
- NIVO + Chemo could be considered a new first-line treatment option in unresectable advanced or recurrent G/GEJ cancer

Why OS difference between these two **nivolumab** gastric studies? Possible explanation...

CheckMate 649 and ATTRACTION-4

Post-trial therapy and overall survival

congress

VIRTUAL S

Increased use of 2L treatment and 2L+ immune checkpoint inhibitors in ATTRACTION-4 may act as a confounder for overall survival.

In CheckMate 649 Asian cohort (n=228), median OS was 16.1 vs 11.5m (HR 0.64) in favour of nivolumab.

Sensitivity analysis of ATTRACTION-4 considering 2L+ immunotherapy use may be useful.

Pembrolizumab Plus Chemotherapy Versus Chemotherapy as First-Line Therapy in Patients With Advanced Esophageal Cancer: The Phase 3 KEYNOTE-590 Study

Ken Kato,¹ Jong-Mu Sun,² Manish A. Shah,³ Peter Enzinger,⁴ Antoine Adenis,⁵ Toshihiko Doi,⁶ Takashi Kojima,⁶ Jean-Philippe Metges,⁷ Zhigang Li,⁸ Sung-Bae Kim,⁹ Byoung Chul Cho,¹⁰ Wasat Mansoor,¹¹ Shau-Hsuan Li,¹² Patrapim Sunpaweravong,¹³ Maria Alsina Maqueda,¹⁴ Eray Goekkurt,¹⁵ Qi Liu,¹⁶ Sukrut Shah,¹⁶ Pooja Bhagia,¹⁶ Lin Shen¹⁷

¹National Cancer Center Hospital, Tokyo, Japan; ²Samsung Medical Center, Sungkyunkwan University Seoul, Republic of Korea, ³Weill Cornell Medical College, New York, NY, USA; ⁴Dana Farber Cancer Institute, Boston, MA, USA; ⁵IRCM, Inserm, Université Montpellier, ICM, Montpellier, France; ⁶National Cancer Center Hospital East, Kashiwa, Japan; ⁷CHU Brest – Institut de Cancerologie et d'Hematologie ARPEGO Network, Brest, France; ⁸Shanghai Chest Hospital Esophageal Disease Center, Shanghai, China; ⁹Asan Medical Center, Seoul, Republic of Korea; ¹⁰Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; ¹¹Christie Hospital NHS Trust, Manchester, United Kingdom; ¹²Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; ¹³Prince of Songkla University Hospital, Songkhla, Thailand; ¹⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹⁵Hematology Oncology Practice Eppendorf, and University Cancer Center Hamburg, Hamburg, Germany; ¹⁶Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁷Peking University Cancer Hospital & Institute; Beijing, China

³Saline IV Q3W for ≤35 cycles. All treatments were continued for the specified number of cycles or until disease progression, intolerable toxicity, withdrawal of consent, or physician decision; EAC, esophageal adenocarcinoma; EGJ, esophagogastric junction, ESCC, esophageal squamous cell carcinoma.

Baseline Characteristics (ITT)

Characteristic, n (%)	Pembro + Chemo N = 373	Chemo N = 376	
Median age, years (range)	64.0 (28-94)	62.0 (27-89)	
≥65 years	172 (46)	150 (40)	
Male	306 (82.0)	319 (84.8)	
Asia Region	196 (52.5)	197 (52.4)	
ECOG PS 1	223 (59.8)	225 (59.8)	
Metastatic disease	344 (92.2)	339 (90.2)	
Unresectable/locally-advanced	29 (7.8)	37 (9.8)	
Squamous-cell carcinoma	274 (73.5)	274 (72.9)	
Adenocarcinoma	99 (26.5)	102 (27.1)	
Esophageal	58 (15.5)	52 (13.8)	
EGJ	41 (11.0)	50 (13.3)	
PD-L1 CPS ≥10ª	186 (49.9)	197 (52.4)	

^aPD-L1 status was not evaluable or missing in 12 patients in the pembro + chemo group and 7 patients in the chemo group. Data cut-off: July 2, 2020.

Overall Survival

Data cut-off: July 2, 2020.

Overall Survival

PD-L1 CPS ≥10

Data cut-off: July 2, 2020.

Progression-Free Survival (RECIST v1.1, investigator)

ESCC

PD-L1 CPS ≥10

All Patients

Data cut-off: July 2, 2020.

Summary and Conclusions

- First-line pembrolizumab plus chemotherapy vs chemotherapy plus placebo provided a statistically significant and clinically meaningful improvement in OS, PFS, and ORR in patients with locally advanced and metastatic esophageal cancer including EGJ adenocarcinoma
 - <u>Superior OS</u>: ESCC CPS ≥10 (HR 0.57, P<0.001), ESCC (HR 0.72, P=0.006), CPS ≥10 (HR 0.62, P<0.001), all patients (HR 0.73, P<0.001)</p>
 - Superior PFS: ESCC (HR 0.65), CPS ≥10 (HR 0.51), all patients (HR 0.65), all P<0.001
 - <u>Superior ORR</u>: all patients (45.0% vs 29.3%, Δ15.8%, P<0.001)
- Comparable safety profile between the two treatment groups
 - No new safety signals detected
- Pembrolizumab plus chemotherapy should be a new standard-of-care as first-line therapy in patients with locally advanced and metastatic esophageal cancer including EGJ adenocarcinoma

Adjuvant therapy esophageal cancer: the same way like we do in melanoma?

Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer following neoadjuvant chemoradiation therapy: first results of the CheckMate 577 study

Ronan J. Kelly,¹ Jaffer A. Ajani,² Jaroslaw Kuzdzal,³ Thomas Zander,⁴ Eric Van Cutsem,⁵ Guillaume Piessen,⁶ Guillermo Mendez,⁷ Josephine Feliciano,⁸ Satoru Motoyama,⁹ Astrid Lièvre,¹⁰ Hope Uronis,¹¹ Elena Elimova,¹² Cecile Grootscholten,¹³ Karen Geboes,¹⁴ Jenny Zhang,¹⁵ Lili Zhu,¹⁵ Ming Lei,¹⁵ Kaoru Kondo,¹⁵ James M. Cleary,¹⁶ Markus Moehler¹⁷

¹The Charles A. Sammons Cancer Center at Baylor University Medical Center, Dallas, TX, USA; ²The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Jagiellonian University, John Paul II Hospital, Cracow, Poland; ⁴University Hospital of Cologne, Cologne, Germany; ⁵University Hospitals Gasthuisberg, Leuven and KULeuven, Leuven, Belgium; ⁶University of Lille, Claude Huriez University Hospital, Lille, France; ⁷Fundacion Favaloro, Buenos Aires, Argentina; ⁸Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; ⁹Akita University Hospital, Akita, Japan; ¹⁰CHU Pontchaillou, Rennes 1 University, Rennes, France; ¹¹Duke Cancer Institute, Durham, NC, USA; ¹²Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹³Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; ¹⁴UZ Gent, Gent, Belgium; ¹⁵Bristol Myers Squibb, Princeton, NJ, USA; ¹⁶Dana Farber Cancer Institute, Boston, MA, USA; ¹⁷Johannes-Gutenberg University Clinic, Mainz, Germany

CheckMate 577 study design

• CheckMate 577 is a global, phase 3, randomized, double-blind, placebo-controlled triala

- Median follow-up was 24.4 months (range, 6.2-44.9)^g
- · Geographical regions: Europe (38%), US and Canada (32%), Asia (13%), rest of the world (16%)

•ClinicalTrials.gov number, NCT02743494; Patients must have been surgically rendered free of disease with negative margins on resected specimens defined as no vital tumor present within 1 mm of the proximal, distal, or circumferential resection margins; << 1% includes indeterminate/nonevaluable tumor cell PD-L1 expression; Until disease recurrence, unacceptable toxicity, or withdrawal of consent; Assessed by investigator, the study required at least 440 DFS events to achieve 91% power to detect an average HR of 0.72 at a 2-sided o of 0.05, accounting for a pre-specified interim analysis; The study will continue as planned to allow for future analysis of OS; Time from randomization date to clinical data cutoff (May 12, 2020).

Baseline characteristics

	Nivolumab	Discobo
		Placebo
Median age (range), years	(n = 532) 62.0 (26-82)	(n = 262) 61.0 (26-86)
Male, %	84	85
	04	65
Race.ª % White	81	82
Asian	16	13
	10	13
ECOG PS, %	50	10
0	58	60
	42	40
Disease stage at initial diagnosis, %		
	34	38
	66	62
Tumor location, %		
EC	60	59
GEJC	40	41
Histology, %		
Squamous cell carcinoma	29	29
Adenocarcinoma	71	71
Pathologic lymph node status ≥ ypN1, %	57	58
Tumor cell PD-L1 expression, b %		
≥ 1%	17	15
< 1%	70	75
Indeterminate/nonevaluable	13	10

Other races not shown; Tumor cell PD-L1 expression determined from surgical specimen by the PD-L1 IHC 28-8 pharmDx assay (Dako).

Disease-free survival

Nivolumab provided superior DFS with a 31% reduction in the risk of recurrence or death and a doubling in median DFS versus placebo

⁴Per investigator assessment; ^b6-month DFS rates were 72% (95% CI, 68-76) in the nivolumab arm and 63% (95% CI, 57-69) in the placebo arm; The boundary for statistical significance at the pre-specified interim analysis required the P value to be less than 0.036.

Disease-free survival by subgroups

Subgroup		Median DFS Nivolumab	, months Placebo	Unstratified HR	Unstratified HR (95% CI)
Overall (N = 794)		22.4	11.0	0.70	
Age, years	< 65 (n = 507) ≥ 65 (n = 287)	24.4 17.0	10.8 13.9	0.65 0.80	- -
Sex	Male (n = 671) Female (n = 123)	21.4 Not reached	11.1 11.0	0.73 0.59	
Race	White (n = 648) Asian (n = 117)	21.3 24.0	10.9 10.2	0.71 0.70	
ECOG PS	0 (n = 464) 1 (n = 330)	29.4 17.0	11.1 10.9	0.73 0.66	- -
Disease stage at initial diagnosis	II (n = 278) III (n = 514)	34.0 19.4	13.9 8.5	0.72 0.68	
Tumor location	EC (n = 462) GEJC (n = 332)	24.0 22.4	8.3 20.6	0.61 0.87	- - -
Histology	Adenocarcinoma (n = 563) Squamous cell carcinoma (n = 230)	19.4 29.7	11.1 11.0	0.75 0.61	
Pathologic lymph node status	ypN0 (n = 336) ≥ ypN1 (n = 457)	Not reached 14.8	27.0 7.6	0.74 0.67	
Tumor cell PD-L1 expression	≥ 1% (n = 129) < 1% (n = 570) Indeterminate/nonevaluable (n = 95)	19.7 21.3 Not reached	14.1 11.1 9.5	0.75 0.73 0.54	

• DFS favored nivolumab versus placebo across these pre-specified subgroups

- Nivolumab is the first adjuvant therapy to provide a statistically significant and clinically meaningful improvement in DFS versus placebo in resected EC/GEJC following neoadjuvant CRT
 - 31% reduction in the risk of recurrence or death and a doubling in median DFS
 - DFS benefit across multiple pre-specified subgroups
- Nivolumab was well tolerated with an acceptable safety profile
 - Incidence of serious TRAEs and TRAEs leading to discontinuation were ≤ 9% with nivolumab and 3% with placebo
- These results represent the first advance in years for this group of patients, potentially
 establishing adjuvant nivolumab as a new standard of care

Un dolce to finish the immunostorm...

AZ Nikolaas Top zorg, warm hart

Lenvatinib + pembrolizumab

after the endometrial cancer success story:

Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an openlabel, single-arm, phase 2 trial Kawazoe et al. Lancet Oncology 2020

- <u>Background</u>: pembrolizumab, an anti-PD-1 antibody, results in tumour response in around 15% of pts with advanced gastric cancer who have a PD-L1 CPS of at least 1. Lenvatinib, a multikinase inhibitor of VEGF receptors and other receptor tyrosine kinases, substantially decreased tumour-associated macrophages and increased infiltration of CD8 T-cells, resulting in enhanced anti-tumour activity of PD-1 inhibitors in an in-vivo model. We aimed to assess the combination of lenvatinib plus pembrolizumab in pts with advanced gastric cancer in a phase 2 study.
- <u>Methods:</u> this study was an open-label, single-arm, phase 2 trial undertaken at the National Cancer Center Hospital East (Chiba, Japan). Eligible pts were aged 20 years or older and had metastatic or recurrent adenocarcinoma of the stomach or gastro-oesophageal junction, an Eastern Cooperative Oncology Group performance status of 0 or 1, and measurable disease according to the Response Evaluation Criteria in Solid Tumors (RECIST version 1.1), irrespective of the number of previous lines of treatment. Pts received 20 mg oral lenvatinib daily plus 200 mg intravenous pembrolizumab every 3 weeks until disease progression, development of intolerable toxicity, or withdrawal of consent. The primary endpoint was objective response rate according to RECIST, analysed in all pts who were eligible and received protocol treatment at least once. The safety analysis included all those who received protocol treatment at least once, regardless of eligibility.
- Findings: between Oct 15, 2018, and March 25, 2019, 29 pts were enrolled in the first-line or second-line settings. At data cutoff (March 20, 2020), the median follow-up was 12.6 months (IQR 10.5–14.3). 20 (69%, 95% CI 49–85) of 29 pts had an objective response. The most common grade 3 treatment-related adverse events were hypertension (in 11 [38%] pts), proteinuria (five [17%]) and platelet count decrease (two [7%]). No grade 4 treatment-related adverse events, serious treatment-related adverse events, or treatment-related adverse deaths occurred.
- Interpretation: lenvatinib plus pembrolizumab showed promising anti-tumour activity with an acceptable safety profile in pts with advanced gastric cancer. On the basis of these results, a confirmatory trial will be planned in the future.

Efficacy outcomes

Tumor response, n (%)	All patients (n=29)	Tumor response	All patients (n=29)
Complete response	1 (3)	ORR, n (%, 95% CI)	20 (69, 49-85)**
Partial response	19 (66)	Immune-related ORR, n (%, 95% CI)	20 (69, 49-85)
Stable disease	9 (31)*	Disease control, n (%, 95% CI)	29 (100, 88-100)
Disease progression	0	Median PFS, months (95% CI)	7.1 (5.4-13.7)
		Median OS, months (95% CI)	NR (11.8-NR)

*Eight patients showed initial tumor shrinkage from baseline. **Includes one patient who was MMR-deficient. CI, confidence interval; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival.

Efficacy in Selected Subgroups and Biomarker Analysis

Objective Response Rates by Patient Characteristics²

Patient Characteristic	n (%)	Objective response n (%)	Patient Characteristic	n (%)	Objective response n (%)
Liver metastases	13 (45)	7 (54)	EBV positive	1 (3)	1 (100)
Peritoneum metastases	9 (31)	4 (44)	PD-L1 CPS ≥1	19 (66)	16 (84)
First-line	14 (48)	10(71)	PD-L1 CPS <1	10 (34)	4 (40)
Second-line	15 (52)	10 (67)	PD-L1 CPS ≥10	5 (17)	5 (100)
MMR-proficient	27 (93)	19 (70)	TMB-high*	11 (52)	9 (82)
MMR-deficient	2 (7)	1 (50)	TMB-low*	10 (48)	6 (60)

*Median (10.01) as the cut-off. CPS, combined positive score; EBV, Epstein-Barr virus; HER2, human epidermal growth factor receptor 2; MMR, mismatch repair; PD-L1, programmed death-ligand 1; TMB, tumor mutation burden.

LEAP-005 (NCT03797326)

Tissue for PD-L1 assessment^b

Primary endpoints: ORR (RECIST v1.1 or RANO, BICR)^f, safety/tolerability Key secondary endpoints: DCR, DOR, PFS (RECIST v1.1 or RANO, BICR)^f

Response assessed Q9W^g until week 54; then Q12W until week 102; then Q24W thereafter

BICR blinded independent central review. Numbers in parentheses indicate line of therapy. PD-L1 status assessed centrally using PD-L1 IHC 22C3 pharmDx assay (Agilent Technologies, Carpinteria, CA, USA). Initial planned enrollment per cohort. With investigator and sponsor approval, patients with disease progression before completing 35 cycles could remain on treatment if they were experiencing clinical benefit without intolerable toxicity; patients experiencing clinical benefit could continue lenvatinib treatment beyond 35 cycles. In interim analysis, if adequate ORR determined, cohort expansion to 100 patients. Response assessed per RECIST v1.1, RANO (for glioblastoma), or iRECIST. For glioblastoma cohort, response was assessed Q6W until week 18, then Q9W until week 54.

Take from ESMO 2020 to home messages

- In metastatic gastric cancer/GEJ-tumours/esophageal adenocarcinoma: <u>nivolumab + chemotherapy</u> is on the way to the new standard therapy in 1st line, certainly when CPS-score ≥ 5...
- In metastatic esophageal cancer: pembrolizumab + chemotherapy is on the way to the new standard therapy in 1st line, certainly when CPS-score ≥ 10...
- Resected esophageal cancer/GEJ-tumours after chemoradiotherapy and not after FLOT chemotherapy: adjuvant nivolumab makes its prudent entry, is OS today important here or are we copycatting melanoma?
- Lenvatinib+pembrolizumab combination enters promisingly the field of metastatic gastric cancer: the earlier the better?

