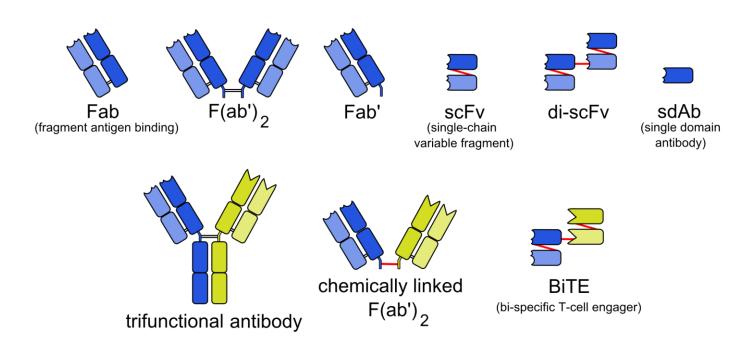
Emerging biomarkers in immuno-oncology

Prof. Dr. Hans Prenen

UZA Edegem

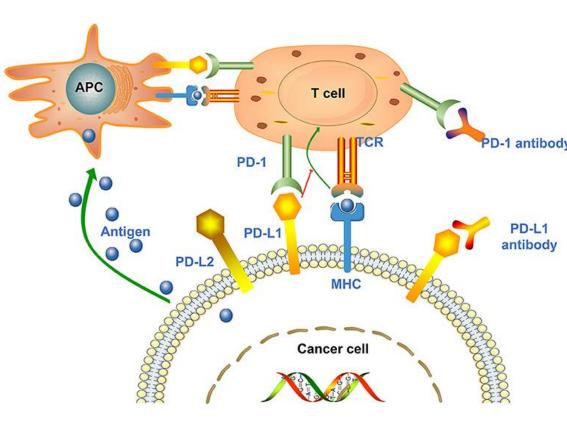
ziekenhuizen



elix Universiteit Antwerpen

Different types of immunotherapy

- Cellular immunotherapy
 - Dendritic cell therapy
 - CAR-T cell therapy
- Antibody therapy
 - Anti-PD(L)1
 - Anti-CTLA4
 - ...



2 major immune checkpoint blockers

- CTLA4:
 - Works more on the T-cell priming stage

- PD1/PDL1:
 - Acts more on tumor microenvironment

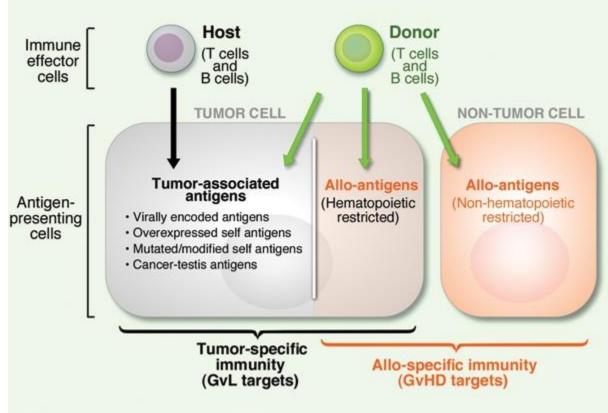
Biomarkers for immunotherapy

- Tumor Antigens
- Immune suppresion markers
- Inflamed tumor markers

Biomarkers for immunotherapy

• Tumor Antigens

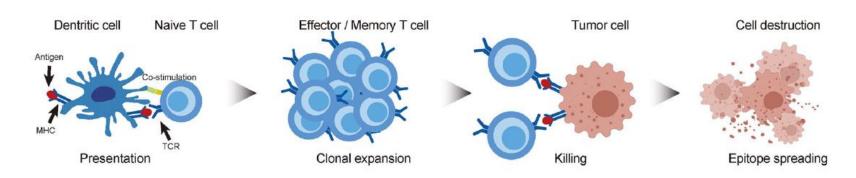
- Immune suppresion markers
- Inflamed tumor markers



Tumor Antigens

 Tumor antigen is an antigenic substance produced in tumor cells, i.e., it triggers an immune response in the host.

<u>Neo-Antigen</u>:


- newly formed antigens that arise from mutated tumor proteins
- May help predict sensitivity to I-O

Universiteit Antwerpen

Neo-antigens

- Higher number of DNA mutations are assocated with higher number of candidate peptides, and results in an increased probability of successfully presented neo-antigens
- TMB = Tumor mutational burden
 - total number of mutations per tumor (when assessed by WES)
 - Normalized to mutations per megabase by gene panel assays

TMB (tumor mutational burden)

- Role of TMB in immunotherapy remains controversial, since not all mutations produce neoantigens
 - Sometimes minimal mutational burden causes strong anti-tumor response (if high quality neoantigens)
- Often cutoff of 10mut/Mb is used for response to IO when Foundation assay is used
- Positive correlation between TMB and Tumor Neoantigen Burdon (TNB)

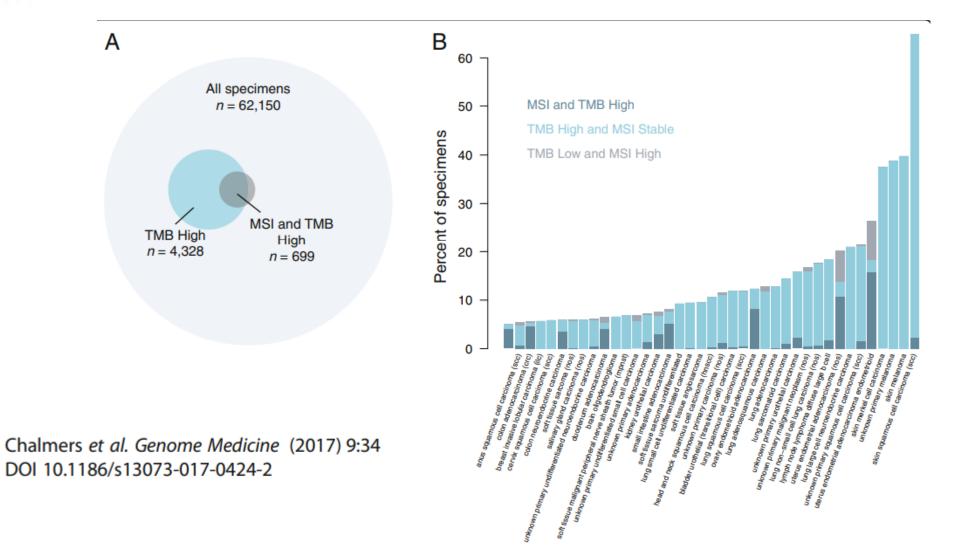
ORIGINAL ARTICLE

High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types

D. J. McGrail^{1*}, P. G. Pilié², N. U. Rashid^{3,4}, L. Voorwerk⁵, M. Slagter^{6,7,8}, M. Kok^{5,9}, E. Jonasch², M. Khasraw¹⁰, A. B. Heimberger¹¹, B. Lim¹², N. T. Ueno¹², J. K. Litton¹², R. Ferrarotto¹³, J. T. Chang^{14,15}, S. L. Moulder¹² & S.-Y. Lin^{1*}

- Association in melanoma, lung and bladder cancer
- No association in breast, prostate and brain cancer

Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study


Aurélien Marabelle, Marwan Fakih, Juanita Lopez, Manisha Shah, Ronnie Shapira-Frommer, Kazuhiko Nakagawa, Hyun Cheol Chung, Hedy L Kindler, Jose A Lopez-Martin, Wilson H Miller Jr, Antoine Italiano, Steven Kao, Sarina A Piha-Paul, Jean-Pierre Delord, Robert R McWilliams, David A Fabrizio, Deepti Aurora-Gara, Lei Xu, Fan Jin, Kevin Norwood, Yung-Jue Bang

www.thelancet.com/oncology Vol 21 October 2020

- Anal, biliary, cervical, endometrial, salivary, thyroid, vulvar carcinoma, mesothelioma, NET, SCLC
- 105 TMB high (≥10)
- ORR 29%

Relation between TMB and MSI

MSI and immunotherapy

Published in final edited form as:

Science. 2017 July 28; 357(6349): 409-413. doi:10.1126/science.aan6733.

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

- ORR 53%, durable
- 12 different tumor types

MSI and immunotherapy

Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability–High/Mismatch Repair–Deficient Metastatic Colorectal Cancer: KEYNOTE-164

Dung T. Le, MD¹; Tae Won Kim, MD²; Eric Van Cutsem, MD, PhD³; Ravit Geva, MD⁴; Dirk Jäger, MD⁵; Hiroki Hara, MD⁶; Matthew Burge, MBChB, FRACP⁷; Bert O'Neil, MD⁸; Petr Kavan, MD, PhD⁹; Takayuki Yoshino, MD¹⁰; Rosine Guimbaud, MD, PhD¹¹; Hiroya Taniguchi, MD, PhD¹²; Elena Elez, MD, PhD¹³; Salah-Eddin Al-Batran, MD¹⁴; Patrick M. Boland, MD¹⁵; Todd Crocenzi, MD¹⁶; Chloe E. Atreya, MD, PhD¹⁷; Yi Cui, PhD¹⁸; Tong Dai, MD, PhD¹⁹; Patricia Marinello, PharmD¹⁹; Luis A. Diaz Jr, MD²⁰; and Thierry André, MD²¹

- ORR 33%
- Previously treated mCRC

MSI and immunotherapy

VOLUME 36 · NUMBER 8 · MARCH 10, 2018

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

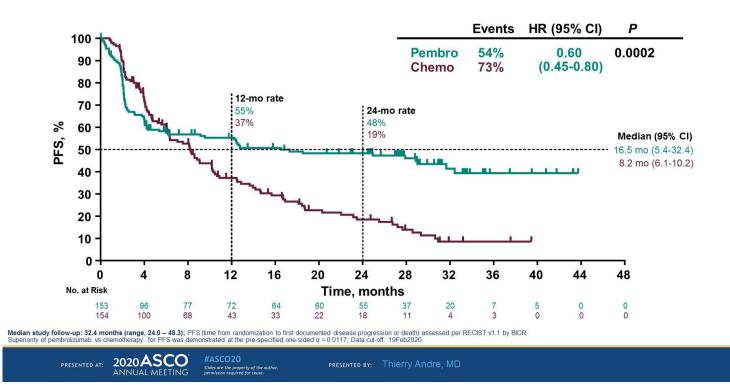
- JCO, march 2018
- ORR 55%

Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair–Deficient/Microsatellite Instability–High Metastatic Colorectal Cancer

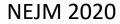
Michael J. Overman, Sara Lonardi, Ka Yeung Mark Wong, Heinz-Josef Lenz, Fabio Gelsomino, Massimo Aglietta, Michael A. Morse, Eric Van Cutsem, Ray McDermott, Andrew Hill, Michael B. Sawyer, Alain Hendlisz, Bart Neyns, Magali Svrcek, Rebecca A. Moss, Jean-Marie Ledeine, Z. Alexander Cao, Shital Kamble, Scott Kopetz, and Thierry André

First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/ Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study

Heinz-Josef Lenz, MD¹; Eric Van Cutsem, MD, PhD²; Maria Luisa Limon, MD³; Ka Yeung Mark Wong, PhD⁴; Alain Hendlisz, MD, PhD⁵; Massimo Aglietta, MD, PhD⁶; Pilar García-Alfonso, MD⁷; Bart Neyns, MD, PhD⁸; Gabriele Luppi, MD⁹; Dana B. Cardin, MD¹⁰; Tomislav Dragovich, MD, PhD¹¹; Usman Shah, MD¹²; Sandzhar Abdullaev, MD, PhD¹³; Joseph Gricar, MS¹³; Jean-Marie Ledeine, MS¹³; Michael James Overman, MD¹⁴; and Sara Lonardi, MD¹⁵


Check

- JCO, oct 2021
- ORR 69%



KEYNOTE-177: Pembrolizumab vs Chemotherapy for MSI-H/dMMR Metastatic CRC

Progression-Free Survival

TNB (tumor neo-antigen burden)

- Emerging biomarker
- Many algorithms (computational pipelines) try to predict neo-antigens
 - Based on peptide affinity with MHC
 - Tumor epitope selections alliance
 - Bioinformatics consortium with scientists from neo-antigen research groups
 - Independently mine the open database of tumor sequencing, predict potential neoantigens and rank candidate peptides.
- TNB correlates with tumor-infiltrating lymphocytes

TNB (tumor neo-antigen burden)

- Limitations:
 - Cut-off value unknown
 - Intra-tumoral heterogeneity (local / between primary and M+)
 - Difficulty of exploring the entire tumor through a partial biopsy
 - Several obstacles hinder the patient immune response, such as the loss of HLA
 - Maybe quality more important than number,...

Biomarkers for immunotherapy

- Tumor Antigens
- Immune suppresion markers
- Inflamed tumor markers

Immune suppression markers

- Lymphocyte-activation gene 3 (LAG-3)
 - Expressed on activated cytotoxic T cells and regulatory T cells
 - Increased expression can promote T-cell exhaustion
 - Preclinical: when PD1 pathway is blocked, LAG-3 may be upregulated

Nivolumab and Relatlimab Combination Shows Promise in Advanced Melanoma

ASCO 2021 Relatlimab = human IgG4 LAG3 Ab

Immune suppression markers

- Tregs (regulatory T-lymphocytes) or suppressor cells
 - Suppress immunity
 - Negative biomarker for IO
- Myeloid-derived suppressor cells
 - Suppress immunity
 - Negative biomarker for IO

Biomarkers for immunotherapy

- Tumor Antigens
- Immune suppresion markers
- Inflamed tumor markers

Inflamed tumor markers: PDL1

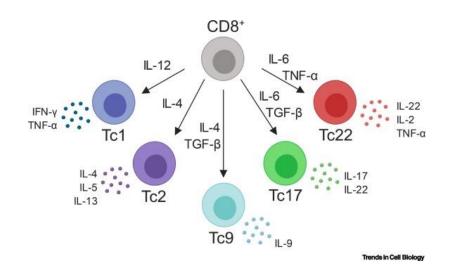
- PDL1 may be expressed on tumor and/or immune cells (0-100%)
- Varies by tumor type, histology, location and line of therapy
- Cut-off for high PDL1 differs among tumor types and line of therapy

Clone	Manufacturer	Platform	Scoring method	Companion drug
22C3 pharmDx	Agilent, Dako	Dako Autostainer Link 48	TPS or CPS	Pembrolizumab
28-8	Agilent, Dako	Dako Autostainer Link 48	TPS	Nivolumab
73-10	Agilent, Dako	Dako Autostainer Link 48	Not yet established	Avelumab
SP142	Ventana	BenchMark Ultra	IC for TNBC IC and TC for NSCLC	Atezolizumab
SP263	Ventana	BenchMark Ultra	TPS TC and IC for urothelial carcinoma	Durvalumab

Inflamed tumor markers: PDL1

- TPS score = Tumor proportion score
- CPS score = Combined positivity score

 $TC (\%) = \frac{Positive tumour cells}{Total number of tumour cells} \times 100$ $Area \ occupied \ by$ $IC-Area (\%) = \frac{positive \ immune \ cells}{Total \ area \ occupied \ by} \times 100$ $tumour \ associated \ immune \ cells$

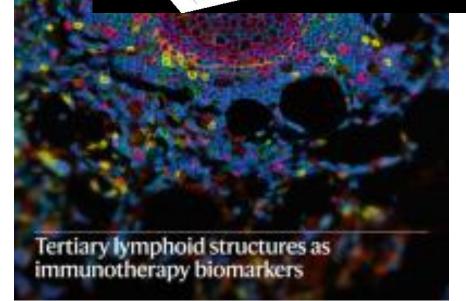

 $TPS (\%) = \frac{Positive \ tumour \ cells}{Total \ number \ of \ tumour \ cells} \times 100$

 $CPS = \frac{Positive \ tumour \ cells +}{Total \ number \ of \ tumour \ cells} \times 100$

Inflamed tumor markers: Tumor infiltrating lymphocytes (TILS)

• Cytotoxic T cells and Natural killer cells

The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis


Feng Li^{a,#}, Caichen Li^{a,#}, Xiuyu Cai^{b,#}, Zhanhong Xie^{c,#}, Liquan Zhou^{a,d}, Bo Cheng^a, Ran Zhong^a, Shan Xiong^a, Jianfu Li^a, Zhuxing Chen^a, Ziwen Yu^a, Jianxing He^{a,*}, Wenhua Liang^{a,*}

Conclusion: High intratumoral, stromal, or invasive marginal but not circulating CD8+ T cells, can predict outcomes in patients with ICIs therapy accross different cancers

Tertiary lymphoid structures Lature | Vol 577 | 23 Jan terctary lymphota structures improve immunotherapy and survival in melanoma Ardicle Tertiary lymphoid structures improve improve and structures improve of mature tertiary lymphoid posed of a T cell zone and BRIEF COMMUNICATION nature cancer

https://doi.org/10.1038/s43018-0<u>21-00232-6</u>

5 February 2019

mber 2019 e: 15 January 2020

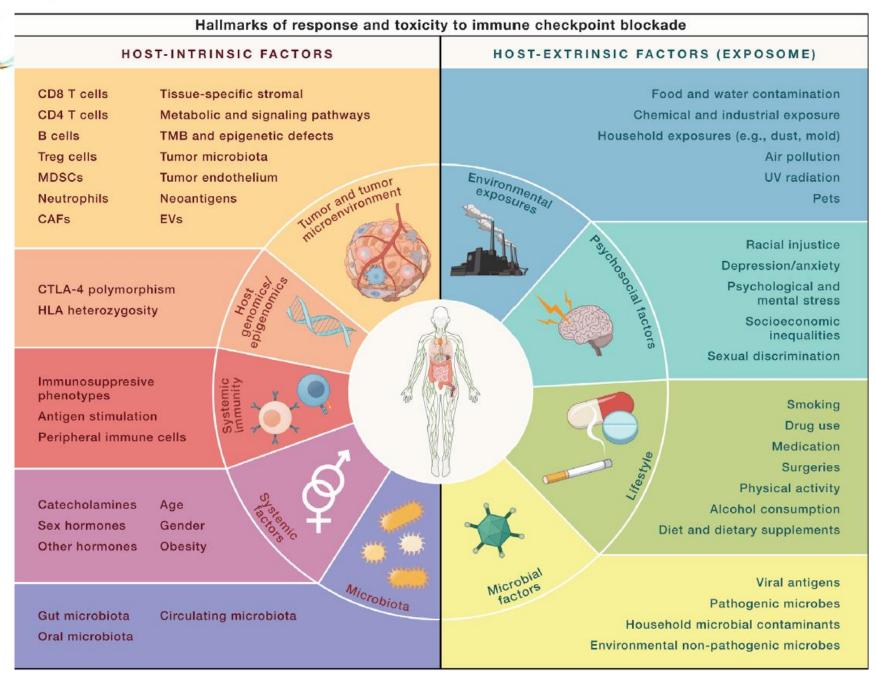
taria manafasi ata palacar / Anatoria 20123 Mala 2016

Article

Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression

Lucile Vanhersecke^{1,2,11}, Maxime Brunet^{2,3,11}, Jean-Philippe Guégan⁴, Christophe Rey⁴, Antoine Bougouin⁵, Sophie Cousin³, Sylvestre Le Moulec⁶, Benjamin Besse⁷, Yohann Loriot⁷, Mathieu Larroquette^{2,3}, Isabelle Soubeyran¹, Maud Toulmonde³, Guilhem Roubaud³, Simon Pernot³, Mathilde Cabart^{0,3}, Francois Chomy³, Corentin Lefevre³, Kevin Bourcier³, Michèle Kind⁸, Ilenia Giglioli⁵, Catherine Sautès-Fridman 6, Valérie Velasco¹, Félicie Courgeon⁴, Ezoglin Oflazoglu⁹, Ariel Savina⁹, Aurélien Marabelle^{®7}, Jean-Charles Soria⁷, Carine Bellera¹⁰, Casimir Sofeu¹⁰, Alban Bessede^{4,11}, Wolf H. Fridman^[]^{5,1]}, François Le Loarer^[]^{1,2,1]} and Antoine Italiano^[]^{2,3,7,1]}

Check for updates



Future

- Machine learning models (integrating genomic, molecular, demographic and clinical data): cfr recent publication in nature biotechnology (nov 2021)
- mRNA inflammation signatures
- Microbiome

Thanks for your attention

