

Therapeutic Strategies Changing Clinical Practice and Emerging in Breast Cancer

Ahmad Awada, MD, PhD Head of Oncology Medicine Department Institut Jules Bordet Université Libre de Bruxelles (U.L.B.) Brussels - Belgium

Disclosures

Advisory role, research grants to my Institute, Speaker fees:

Roche, Lilly, Amgen, EISAI, BMS, Pfizer, Novartis, MSD, Genomic Health, Ipsen, AstraZeneca, Bayer, Leo Pharma, Merck, Daiichi, Seattle Genetics, Pierre Fabre

Content of the talk: Studies changing practice in early and MBC + therapeutic algorithms

- Luminal Breast Cancer
- HER2 positive BC
- TNBC
- Precision Oncology in MBC

I. Luminal Breast Cancer

Therapeutic algorithm for luminal subtype MBC in 2021: CDK4/6 inhibitors as early as possible

* Individualisation based on prior therapy and PI3K status MONALEESA2 (ET ±Ribo;1L) : ↑ OS(med 0S>5Y!)

ALPELISIB + Fulvestrant in HR+, HER2- MBC Results of the phase III SOLAR-1 Trial

André F. et al ESMO 2018 - NEJM 2019

- Recurrence/progression on/after prior AI
- Identified PIK3CA status (in archival or fresh tumor tissue)
- Measurable disease or ≥1 predominantly lytic bone lesion
- ECOG performance status ≤1 (N=572)

solar¹

Trials in luminal MBC of interest for clinical practice

ASCO 2020 – abst 1007/1006

BYLieve cohort B results into context

	SOLAR-1 Fulv + Alp	BYLieve cohort A Fulv + Alp	BYLieve cohort B Let + Alp	
1st line 2nd line 3rd line	52% 47% -	11.8% 70.1% 16.5%	1.6% 52.4% 44.4%	>80% progressed on prior Al
Prior CDK4/6i	5.9%	100%	100%	\mathbf{P}
mPFS (months)	11.0	7.3	5.7	5.7 months mPFS
ORR%	36%	21%	18%	with available data
CBR%	57%	42%	32%	on post-CDK4/6i tx
Decrease in best % change from baseline	75.6%	70.1%	66.3%	Improvement in toxicity management
AEs leading to discontinuation	25%	20.5%	14.3%	with increasing

André F, NEJM 2019; Rugo H et al, ASCO 2020; Rugo H et al, SABCS 2020

BYLieve: conclusions

BYLieve cohorts A and B support Alpelisib + ET as a treatment option after CDK4/6i for *PIK3CA*-mut patients.

- In cohort B, efficacy of Alpelisib + Letrozole was demonstrated despite >80% of pts progressed on prior Al.
 - Reasonable to expect substantial rate of ESR1 mutations
 - Any role for combining Alpelisib with new SERDs in this context?

Luminal MBC : Perspectives

- CDK4/6i are SOC in patients with metastatic disease
- Drug activity of post CDK4/6i therapy is not good enough
- Agents under investigations:

CDK4/6 inhibitors: Adjuvant setting

MonarchE and PALLAS : Study characteristics

CHARACTERISTICS	MONARCHE	PALLAS
Study drug (2y) Inclusion period	Abemaciclib 07/17 – 08/19	Palbociclib 09/15 - 11/18
Stratification factors	Previous chemo Menopausal status Region	Stage II A vs IIB/III Chemo yes/no Age (50), Region
Pts eligibility	LN + (≥4) or LN + (1-3) + T≥5cm or gr3 or ki67 ≥ 20%	Stage II – III
Statistics	85% power for HR 0.73 5y IDFS 82,5% in control Arm (390 IDFS events)	85% power for HR 0.75 (IDFS)
Interim analysis	50% of required events → Updated results	1st futility (167 events) <u>2d futility (313 events)</u> 69 IDFS for final analysis → Negative results

Johnston et al, JCO, 38, 2020 Mayer et al, ESMO 2020

MonarchE Study Design

^aRecruitment from July 2017 to August 2019; ^bEndocrine therapy of physician's choice [e.g. aromatase inhibitors, tamoxifen, LHRH agonist]; ^cKi-67 expression centrally assessed in all patients from both cohorts with suitable untreated breast tissue using Ki-67 immunohistochemistry Assay by Dako/Agilent

Abbreviations: ALN = positive axillary lymph nodes; CPF = clinicopathological features; HER2 = human epidermal receptor 2; HR = hormone receptor; ITT = intent-to-treat population; N = number of patients in the ITT population; R = randomized; SOC = standard of care

IDFS Benefit Maintained with Additional Follow-up in ITT population

The absolute difference in IDFS rates between arms was 5.4% at 3 years.

Benefit of DRFS Maintained with Additional Follow-up in ITT population

Ki-67 as a prognostic marker in Cohort 1

As expected, high Ki-67 index was prognostic of worse outcome. However, abemaciclib benefit was consistent regardless of Ki-67 index.

IDFS in ITT Ki-67 High (≥ 20%) Population

33.7% reduction in the risk of developing an IDFS event. The absolute difference in IDFS rates between arms was 6.0% at 3 years.

Mature Safety Findings Consistent with Previous Analyses

Median duration of abemaciclib: 23.7 months

Other events of interest, any grade	Abemaciclib + ET N = 2791, %	ET Alone N = 2800, %
VTE	2.5	0.6
PE	1.0	0.1
ILD	3.2	1.3

Abbreviations: VTE = venous thromboembolic event; PE = pulmonary embolism; ILD = Interstitial lung disease

All patients who received at least one dose of study treatment were included in the safety population

MonarchE Conclusions (1)

- With additional follow-up, adjuvant abemaciclib combined with ET continued to demonstrate clinically meaningful benefit for patients with HR+, HER2-, node-positive, high risk EBC
 - Robust IDFS and DRFS benefit was maintained beyond the 2-year treatment period of abemaciclib
- Safety data set is mature with 90% of patients off study treatment period
 - Data are consistent with known safety profile of abemaciclib and considered acceptable in high risk EBC

MonarchE Conclusions (2)

 Ki-67 index was prognostic, but abemaciclib benefit was consistent regardless of Ki-67 index

 Continued follow-up for efficacy and safety is ongoing until the final assessment of OS

Is abemaciclib a standard of care in EBC?

- More mature data of iDFS are reassuring
- OS data are of importance (awaited)
- Qol and PROs are very important in this setting
- Financial aspect is important

The so far observed results of Abemaciclib in high risk population (= niche) are very encouraging. More mature efficacy and toxicity data are coming.

II. HER-2 Positive Breast Cancer: An extraordinary progress paving the way to cure this BC molecular subtype ?!

Progress Over Time of Earliest developed agents for HER2-Positive MBC

Cape, capecitabine; CT, chemotherapy; D, docetaxel; H, trastuzumab; Lap, lapatinib; OS, overall survival; P, pertuzumab; T-DM1, trastuzumab emtansine

1. Slamon D, et al. N Engl J Med. 2001;15(1);344:783-792. 2. Swain S, et al. N Engl J Med. 2015;372(8):724-734. 3. Geyer C, et al. N Engl J Med. 2006;355:2733-2743. 4. Verma S, et al. N Engl J Med. 2012;367(19):1783-1791.

Progress on the clinical Management of HER2 Positive advanced Breast cancer

- New HER2 agents in ABC
 - Neratinib (NALA)
 - Tucatinib (HER2CLIMB)
 - Pyrotinib
 - Trastuzumab Deruxtecan (DESTINY B03;TULIP)
- Perspectives
 - Antibody drugs conjugates (high versus low HER2 expressors!)

San Antonio Breast Cancer Symposium®, December 10-14, 2019

Tucatinib in HER2+ MBC ± Brain metastases

HER2CLIMB Trial Design

Key Eligibility Criteria HER2+ metastatic breast cancer Prior treatment with trastuzumab, pertuzumab, and T-DM1 ECOG performance status 0 or 1 Brain MRI at baseline Previously treated stable brain metastases Untreated brain metastases not needing immediate local therapy Previously treated progressing brain metastases not needing immediate local therapy

· No evidence of brain metastases

*Stratification factors: presence of brain metastases (yes/no), ECOG status (0 or 1), and region (US or Canada or rest of world)

https://clinicaltrials.gov/ct2/show/NCT02614794

This presentation is the intellectual property of the author/presenter. Contact them at murthy1@mdanderson.org for permission to reprint and/or distribute.

HER2 CLIMB

Key Baseline Demographics and Disease Characteristics

		Total Population, N=612		
Characteristic, n (%)		TUC+Tras+Cape n=410	Pbo+Tras+Cape n=202	
Female		407 (99)	200 (99)	
Age (years), median (range)		55.0 (22, 80)	54.0 (25, 82)	
FCOC and an and a labor	0	204 (50)	94 (47)	
ECOG performance status	1	206 (50)	108 (54)	
Stage IV at initial diagnosis		143 (35)	77 (39)	
Harmona constantiation	ER and/or PR-positive	243 (60)	127 (63)	
Hormone receptor status	ER and PR-negative	161 (40)	75 (37)	
Prior lines of therapy, median	Overall	4.0 (2, 14)	4.0 (2,17)	
(range)	Metastatic setting	3.0 (1, 14)	3.0 (1, 13)	
Presence/history of brain metas	lases	198 (48)	93 (46)	
Treated, stable		118 (59.6)	55 (59.1)	
Untreated		44 (22.2)	22 (23.7)	
Treated, progressing		36 (18.2)	16 (17.2)	

Baseline characteristics were balanced between endpoint populations and treatment arms

This presentation is the intellectual property of the author/presenter. Contact them at <u>murthy1@mdanderson.org</u> for permission to reprint and/or distribute.

A Kaplan-Meier Estimates of Progression-free Survival among Patients with Brain Metastases

San Antonio Breast Cancer Symposium®, December 10-14, 2019 Overall Survival in the Total Population and Prespecified Subgroups.

A Kaplan-Meier Estimates of Overall Survival

Months since Randomization B Subgroup Analysis of Overall Survival

RK Murthy et al. N Engl J Med 2019. DOI: 10.1056/NEJMoa1914609

ULB

Early Studies of Antibody drug conjugates (ADCs) targeting HER2

ADC	Target	Initial Phase I Results	Main Side Effects
T-DXd	Humanized HER2 antibody + topoisomerase-I inhibitor exatecan	RR: 64.2% PFS:10.4 mo. (heavily pre- treated patients)	Gastrointestinal, pulmonary and haematological
SYD985 ²	Trastuzumab + duocarmazine	RR: 33% ² PFS: 9.4 mo.	Ophthalmologic effects (conjunctivitis and keratitis)

ULB iris

HER2+ MBC :

Results from 2 ADCs targeting HER2 amplified tumors

STUDY	DESTIN	NY B03	TU	LIP
Drugs	T-DXd vs	T-DM1	SYD 985 vs	ТРС
N° patients	261	263	291	146
mPFS (BICR) (mo)	NR	6.8	7	4.9
ORR % (CR) (confirmed)	79 (16)	34 (9)		
Lung tox (%)	10.5 (93% gr1/2)	1.9	7.6 (2 gr5!)	
Conjunctivitis	-	-	38	-
Kertitis	-	-	38	-

Proposed Therapeutic Algorithm of HER2 amplified MBC in 2021 : An Evolving Field

HER2 mutated/HR+ MBC : Neratinib + Fulverstrant + Trastuzumab (SUMMIT trial) → ORR 46% ; mDOR 10.9 mo ; mPFS: 8.3 mo

III. Triple Negative Breast Cancer Disease

Progresses on the management of Triple Negative Breast Cancer in 2021

- More on the role of capecitabine in TNBC(adjuvant)
- Role of platinum in the neoadjuvant setting
- Role of Olaparib (PARP inh) in BRCA mutated high risk tumors (Adjuvant setting)
- Update on the role of CPIs in the early and metastatic settings
- Role of Antibody drugs conjugates (Sacituzumab Govitecan)

SYSUCC01 Adjuvant capecitabine trial in early TNBC

* Completed therapy 91%, med dose intensity 85%, H&F syndrome 45% (17% gr3)

ASCO 2020 – abst 507

Studies influencing the current therapeutic guidelines in TNBC

Study	Setting	Experimental drug	Outcome
KN522	TNBC (neo/adj)	Pembrolizumab	个 EFS 个 PCR Trend OS
Brightness	TNBC (neoadj)	Carboplatin	个 EFS 个 PCR
Olympia	BRCA + (adj)	Olaparib	↑ IDFS
KN355	TNBC(1line)	Pembro + Chemo	个 PFS 个OS
ASCENT	≥ 2 prior CT	Sacituzumab Govitecan	个ORR 个PFS 个OS

KEYNOTE-522: Phase 3 Study of Neoadjuvant Pembrolizumab + Chemotherapy versus Placebo + Chemotherapy, Followed by Adjuvant Pembrolizumab versus Placebo for Early-Stage Triple-Negative Breast Cancer

KEYNOTE-522: Phase 3 Study of Neoadjuvant Pembrolizumab + Chemotherapy versus Placebo + Chemotherapy, Followed by Adjuvant Pembrolizumab versus Placebo for Early-Stage Triple-Negative Breast Cancer

KEYNOTE-522: Phase 3 Study of Neoadjuvant Pembrolizumab + Chemotherapy versus Placebo + Chemotherapy, Followed by Adjuvant Pembrolizumab versus Placebo for Early-Stage Triple-Negative Breast Cancer

Statistically Significant and Clinically Meaningful EFS at IA4

KEYNOTE-522: Phase 3 Study of Neoadjuvant Pembrolizumab + Chemotherapy versus Placebo + Chemotherapy, Followed by Adjuvant Pembrolizumab versus Placebo for Early-Stage Triple-Negative Breast Cancer

Statistically Significant and Clinically Meaningful EFS at IA4

KEYNOTE-522: Phase 3 Study of Neoadjuvant Pembrolizumab + Chemotherapy versus Placebo + Chemotherapy, Followed by Adjuvant Pembrolizumab versus Placebo for Early-Stage Triple-Negative Breast Cancer

KEYNOTE-522: Phase 3 Study of Neoadjuvant Pembrolizumab + Chemotherapy versus Placebo + Chemotherapy, Followed by Adjuvant Pembrolizumab versus Placebo for Early-Stage Triple-Negative Breast Cancer

KEYNOTE-522: Phase 3 Study of Neoadjuvant Pembrolizumab + Chemotherapy versus Placebo + Chemotherapy, Followed by Adjuvant Pembrolizumab versus Placebo for Early-Stage Triple-Negative Breast Cancer

Courtesy C. Duhem

EVENT-FREE SURVIVAL, OVERALL SURVIVAL, AND SAFETY OF ADDING VELIPARIB PLUS CARBOPLATIN OR CARBOPLATIN ALONE TO NEOADJUVANT CHEMOTHERAPY IN TRIPLE-NEGATIVE BREAST CANCER AFTER ≥4 YEARS OF FOLLOW-UP: BRIGHTNESS, A RANDOMIZED PHASE 3 TRIAL ESMO 2021

Sibylle Loibl^{1,2}, William M. Sikov³, Jens Huober⁴, Hope S. Rugo⁵,

- Stratification : gBRCA , N+/-, AC +/-dd
- <u>Etudie</u>: VELIPARIB +/- , CARBOPLATINE +/-

EVENT-FREE SURVIVAL, OVERALL SURVIVAL, AND SAFETY OF ADDING VELIPARIB PLUS CARBOPLATIN OR CARBOPLATIN ALONE TO NEOADJUVANT CHEMOTHERAPY IN TRIPLE-NEGATIVE BREAST CANCER AFTER ≥4 YEARS OF FOLLOW-UP: BRIGHTNESS, A RANDOMIZED PHASE 3 TRIAL ESMIO 2021 Sibylle Loibl^{1,2}, William M. Sikov³, Jens Huober⁴, Hope S. Rugo⁵,

EVENT-FREE SURVIVAL, OVERALL SURVIVAL, AND SAFETY OF ADDING VELIPARIB PLUS CARBOPLATIN OR CARBOPLATIN ALONE TO NEOADJUVANT CHEMOTHERAPY IN TRIPLE-NEGATIVE BREAST CANCER AFTER ≥4 YEARS OF FOLLOW-UP: BRIGHTNESS, A RANDOMIZED PHASE 3 TRIAL ESMIO 2021

Sibylle Loibl1.2, William M. Sikov3, Jens Huober4, Hope S. Rugo5,

- + Carbo en NAC $\rightarrow \uparrow$ Significative du taux de pCR
 - de l'EFS
 - données OS : Immatures

- Indépendamment du status gBRCA
- Pas de toxicité à moyen terme

These findings support the inclusion of carboplatin in neoadjuvant chemotherapy for stage II-III TNBC, irrespective of gBRCA status

Courtesy C. Duhem

Breast Cancer with mutations in DNA damage response pathway genes (BRCA – mutated tumors)

OlympiA TRIAL – Study design

Adapted from Tutt. NEJM. 2021;[Epub]. NCT02032823.

BC, breast cancer; CPS, clinical and pathologic stage; CT, chemotherapy; EG, estrogen-receptor status and histologic grade; ER, estrogen receptor; HR, hormone receptor; ECOG PS, Eastern Cooperative Oncology Group performance status; LN, lymph node; pCR, pathologic complete response; TNBC, triple-negative breast cancer; tx, treatment.

BOHN N°3 – juillet 2021

Invasive disease-free survival in the phase III Olympia trial

Blokken et al, BJMO V15 – september 2021

Chemo ± CPIs in metastatic TNBC: A summary

	VIRTUAL SMOCONGress	MUNICH SMOCONGress	ASCO20 Virtual	
PDL1+ subsets	IMpassion 131	IMpassion 130	KEYNOTE 355	
N	292	369	323 (2:1)	
Minimum DFI	12m	12m	6m (20% < 12m)	
> 3 involved sites	15%	20%	43% (<u>≥</u> 3)	
Chemo backbone	paclitaxel	nab paclitaxel	nab paclitaxel, paclitaxel, gem/carbo	
Prior chemo for EBC	52% taxane	51% taxane	22% prior same class	
No prior chemo	29% de novo	35% chemo-naive	32% de novo	
PDL1+ rate	45% (SP142, IC≥1%)	41% (SP142, IC≥1%)	38% (22C3, CPS≥10)	
	PFS ≈ OS ≤	PFS 个 « OS 个 »	PFS 🛧	

Question de corticoïdes? Type de chimiothérapie ? Taxol vs Nab PacliT ?

KEYNOTE-355 Study Design

<u>Current analysis</u>: PFS outcomes for each chemotherapy partner and key secondary efficacy endpoints

- * Primary Endpoints: PFS and OS in patients with PD-L1-positive tumors^b (CPS \geq 10 and CPS \geq 1) and in the ITT population
- * Secondary Endpoints: ORR[,] DCR[,] DOR
- * Exploratory Endpoint: Consistency of treatment effect in all patients and in those with PD-L1–positive tumors^b (CPS ≥10 and CPS ≥1) according to on-study chemotherapy partner

INSTITUT JULES BORDET Hugo Rugo

KEYNOTE-355 : PFS in Subgroups by Chemotherapy regimen

In subgroup analysis, PFS with pembrolizumab + CT was improved regardless of CT partner

Sacituzumab Govitecan

Sacituzumab Antibody-Drug Conjugate (ADC)

Humanized RS7 antibody

Targets Trop-2, an epithelial antigen expressed on many solid cancers, including mTNBC

SN-38 payload

- Targets 136-fold more SN-38 than the parent compound, irinotecan (topoisomerase I inhibitor)
- ADCs unique chemistry avoids low solubility and selectively delivers SN-38 to the tumor

Linker for SN-38

- High drug-to-antibody ratio (7.6:1)
- pH-sensitive linker for rapid payload release at or inside the tumor

This presentation is the intellectual property of the author/presenter. Contact them at shurvitz@mednet.ucla.edu for permission to reprint and/or distribute.

ASCENT: A Phase 3 Confirmatory Study of Sacituzumab Govitecan in Refractory/Relapsed mTNBC

Progression-Free Survival (BICR Analysis)

Overall Response and Best Percent Change From Baseline in Tumor Size

(Sacituzumab Govitecan)

TRAEs (All Grade, >20%; Grade 3/4, >5% of Patients)

		SG (n=258)			TPC (n=224)	
TRAE*	All grade %	Grade 3, %	Grade 4, %	All grade, %	Grade 3, %	Grade 4, %
Neutropenia ⁺	63	46	17	43	27	13
Anemia ¹	34	8	0	24	5	0
Leukopenia§	16	10	1	11	5	1
Febrile neutropenia	6	5	1	2	2	<1
Diarrhea	59	10	0	12	<1	0
Nausea	57	2	<1	26	<1	0
Vomiting	29	1	<1	10	<1	0
Fatigue	45	3	0	30	5	0
Alopecia	46	0	0	16	o	0
	TRAE* Neutropenia ⁺ Anemia [‡] Leukopenia [§] Febrile neutropenia Diarrhea Nausea Vomiting Fatigue Alopecia	TRAE*All grade %Neutropenia†63Anemia‡34Leukopenia§16Febrile neutropenia6Diarrhea59Nausea57Vomiting29Fatigue45Alopecia46	TRAE*All grade %Grade 3, %Neutropenia*6346Anemia*348Leukopenia§1610Febrile neutropenia65Diarrhea5910Nausea572Vomiting291Fatigue453Alopecia460	TRAE* All grade % Grade 3, % Grade 4, % Neutropenia ⁺ 63 46 17 Anemia ⁺ 34 8 0 Leukopenia [§] 16 10 1 Febrile neutropenia 6 5 1 Diarrhea 59 10 0 Nausea 57 2 <1	TRAE* All grade % Grade 3, % Grade 4, % All grade, % Neutropenia' 63 46 17 43 Anemia' 34 8 0 24 Leukopenia [§] 16 10 1 11 Febrile neutropenia 6 5 1 2 Diarrhea 59 10 0 12 Nausea 57 2 <1	TRAE* TPC (n=224) TRAE* All grade % Grade 3, % Grade 4, % All grade, % Grade 3, % Grade 4, % All grade, % Grade 3, % Grade 3, % Grade 4, % All grade, % Grade 3, % Grad 3, %

→ Arrêt = 4,7 %

Current standard-of-care treatments in metastatic triple-negative breast cancer and future perspective

JULES BORDET

ULB iris

Genomic Aberrations in Breast Cancer That Guide Precision Medicine: An Evolving Field

uciic	Aberration	Aberration, %	Targeted Drug(s)
Evidence based (from phase II or III trials)			
HER2	Amplification	20	Trastuzumab, pertuzumab, T-DM1, lapatinib, neratinib
HER2	Activating mutations (nonamplified HER2)	2	
PIK3CA	Activating mutations	30-40	Alpelisib
BRCA1/2	Inactivating germline mutations	5	Olaparib, talazoparib
NTRK	Gene fusion	< 1	Larotrectinib
PD-L1	Expression by IHC	40	Atezolizumab + nab-paclitaxel
Emerging			
ESR1	Mutations	30-40	Fulvestrant, other SERDs
PTEN	Inactivating mutations or methylation	20	PI3K, AKT, and mTOR inhibitors
MYC	Amplification	16	BET inhibitors
C-MET	Amplification or mutation	15	MET inhibitors (cabozantinib)
FGFR1-4	Amplification	10	FGFR inhibitors
CDH1	Inactivating mutations	7	Wnt inhibitors
AKT	Activating mutations	2	AKT and mTOR inhibitors (MK-2206, everolimu

Thank you

