Brain Metastases *Therapy and Perspectives*

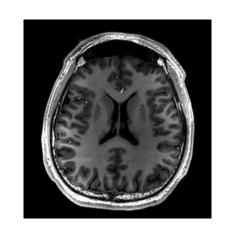
Nuria Kotecki, MD BSMO Meeting, 2/12/2022

OUTLINE

- Epidemiology
- General considerations for the treatment of CNS metastases
- Clinical trials in CNS metastases
- Systemic treatments for CNS metastases
- Perspectives

OUTLINE

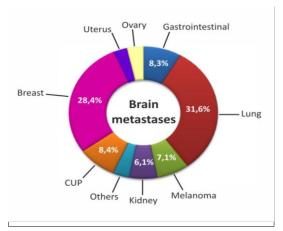
- Epidemiology
- General considerations for the treatment of CNS metastases
- Clinical trials in CNS metastases
- Systemic treatments for CNS metastases
- Perspectives



Brain metastases: a growing issue

Most common CNS tumors in adults

Incidence is increasing due to both improved diagnostic techniques and prolonged survival following the progress systemic treatments

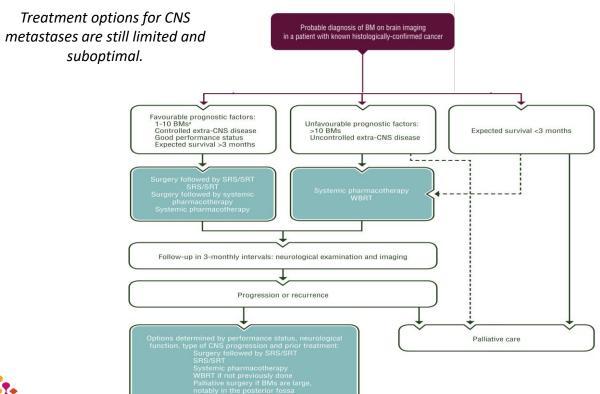


Brain metastases in solid tumours

	Median time to BM (mo)	Incidence	Median survival
Breast cancer		12-17%	3-25 months
Subtypes:			
Triple-negative	27.5	25-27%	7.3 months
HER2/neu	35.8	11-30%	17.9 months
Luminal A	54.4	8-15%	10 months
Luminal B	47.4	11%%	23 months
Lung cancer: NSCLC EGFRm, ALK rearrangement		13-30%	4-16 months 4-18 months
SCLC SCLC		50%	3-4 months
Melanoma		15-50%	4-8.3 months

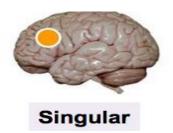
Preusser et al, Acta Neuropathol 2012

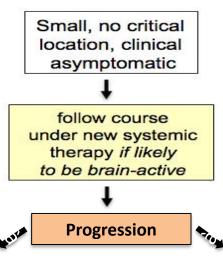
Adapted from: Taillibert *et al.* Cancer/Radiotherapie 2015 Witzel et al.BreastCancerResearch (2016) 18:8 Sperduto et al. Journal of Neuro Oncol. 2013

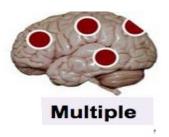

OUTLINE

- Epidemiology
- General considerations for the treatment of CNS metastases
- Clinical trials in CNS metastases
- Systemic treatments for CNS metastases
- Perspectives

EANO/ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours

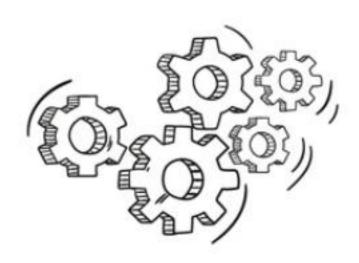



Depending on:


- Performans status
- Number, size and site of metastases
- Extra-CNS disease control
- Prognostic index (GPA/RPA)

When to favor systemic therapy options for BM?

Surgery or Radiosurgery; WBRT if multiple


Surgery or Radiosurgery if <4; Systemic Therapy? (Re-)WBRT

It 's all about optimizing the treatment sequence

Multidisciplinary brain metastasis tumor boards

Are emerging as an optimal method for discussing clinical options for patients presenting with intracranial disease

OUTLINE

- Epidemiology
- General considerations for the treatment of CNS metastases
- Clinical trials in CNS metastases
- Systemic treatments for CNS metastases
- Perspectives

Clinical trials in CNS metastases: a recent paradigme shift

- •Brain metastases have been historically excluded from clinical trials
- •Huge unmet medical need and increasing prevalence
- •Demonstration of CNS activity of systemic therapies in various tumor types

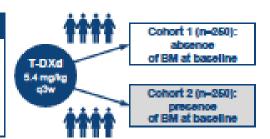
Recommendation for inclusion of patients with treated/stable brain metastasis	Include such patients in all phases of trials except if there is a strong justification to exclude In early exploratory studies, inclusion should not be based on the investigational druproperty of penetrating the BBB Include patients who have neurologically stable CNS disease, to be able to correctly verify if the toxicity is due to the drug itself or underlying disease Limit enrolment of patients who are receiving a stable/decreasing dose of steroid dual week before study entry	
Recommendation for inclusion of patients with active brain metastasis	Should not be automatically excluded from trials; should be included in trials if immediate CNS-directed treatment is not necessary and is unlikely to be required Describe the justification of exclusion in cases where the investigated drug is have CNS-related adverse events	Curr. Treat. Options in Oncol. (202 DOI 10.1007/s11864-021-00875-8

FDA recommendations for clinical trial eligibility criteria for cancer patients with CNS metastases

Neuro-oncology (GJ Lesser, Section Editor)

Clinical Trial Considerations in Neuro-oncology

Eudocia Q. Lee, MD, MPH @



A phase IIIb/IV study of T-DXd in patients with previously treated advanced/metastatic HER 2 positive breast cancer with or without baseline brain metastasis

Study Design and Population

Patient population (N=600)

- HER2-positive advanced or metastatic breast cancer
- Absence or presence of BM at baseline
- s2 prior lines of therapy in the metastatic setting

Participants should have pathologically documented BC that is: unresectable/advanced or metastatic; confirmed HER2+ expression must have either: no evidence of BM, or untreated BM not needing immediate local therapy, or previously treated stable or progressing

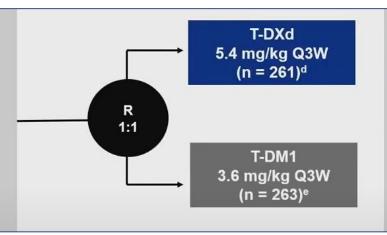
BM Participants with BM *must be neurologically stable*

OUTLINE

- Epidemiology
- General considerations for the treatment of CNS metastases
- Clinical trials in CNS metastases
- Systemic treatments for CNS metastases
- Perspectives

SYSTEMIC TREATMENT OF PATIENTS WITH HER2+ BCBMs

	Trial	n =	Intracranial ORR	CNS PFS	Median OS
Lapatinib + Capecitabine	Landscape (no prior WBRT)	45	65,9%		
Neratinib + Capecitabine	TBRC 022 (active CNSm - prior RT allowed)	37	49%		13,3 months
Tucatinib + Trastuzumab + Capecitabine	ONT 380 005 (including active CNSm) HER2CLIMB (including active CNSm)	198	42% 47,7% (75 pts) Risk of IC progression or death reduced by 68%	9,9 months	OS - 18,1 months Risk of death reduced by 42%
Trastuzumab- Deruxtecan	DESTINY Breast 03 (treated and stable) DEBBRAH (active BM cohort 2/3)	43 13	63,9% (36 pts) 46.2% in active BM.		


DESTINY-Breast 03 trial

Patients (N = 524)

- Unresectable or metastatic HER2-positive^a breast cancer that has been previously treated with trastuzumab and a taxane^b
- Could have clinically stable, treated brain metastases^c
 - ≥2 weeks between end of whole brain radiotherapy and study enrollment

Stratification factors

- Hormone receptor status
- Prior treatment with pertuzumab
- History of visceral disease

Primary endpoint

PFS (BICR)

Key secondary endpoint

OS

Secondary endpoints

- ORR (BICR and investigator)
- DOR (BICR)
- PFS (investigator)
- Safety

	T-DXd	T-DM1
History of BM, n (%)		
Yes No	62 (23.8) 199 (76.2)	52 (19.8) 211 (80.2)
BM at baseline, ^b n (%)		
Yes No	43 (16.5) 218 (83.5)	39 (14.8) 224 (85.2)

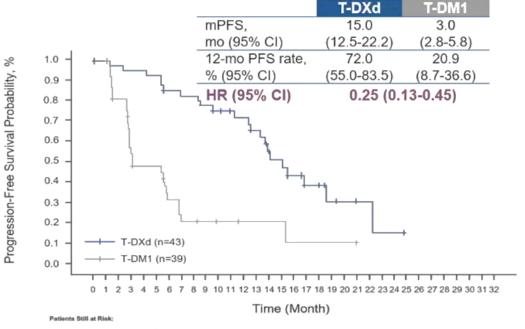
Baseline characteristics

DESTINY-Breast 03 trial - CNS activity

Intracranial Response per BICR using RECIST 1.1

	T-DXd (n = 36)	T-DM1 (n = 36)		
Best Overall Response, n (%) ^a				
CR	10 (27.8)	1 (2.8)		
PR	13 (36.1)	11 (30.6)		
Non-CR/Non-PD	6 (16.7)	7 (19.4)		
SD	4 (11.1)	7 (19.4)		
PD	1 (2.8)	8 (22.2)		
Not Evaluable	0	1 (2.8)		
Missing	2 (5.6)	1 (2.8)		
Subjects with Objective Response of CR or PR, n	23	12		

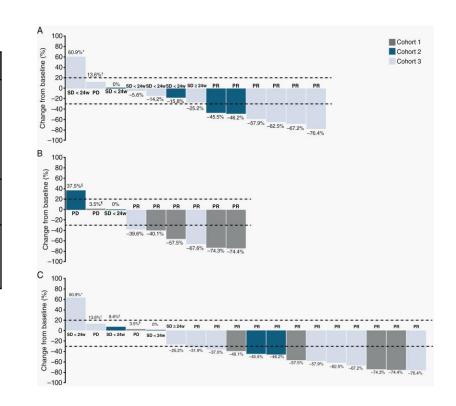
CR, complete response; DCR, disease control rate, mDOR, median duration of response; PD, progressive disease; PR, partial response; SD, stable disease; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. Table includes target and non-target lesions. Only patients with target lesion assessments are eligible for inclusion in waterfall.


Red line at 20% indicates progressive disease; black line at -30% indicates partial response

*Denominator for percentages is the number of subjects in the full analysis set with brain metastases tumor assessment

DESTINY-Breast 03 trial – CNS activity

Brain Metastases at Baseline



DEBBRAH trial – T-DXd in pts with breast cancer and CNS involvement

	Cohort 1	Cohort 2	Cohort 3
Inclusion criteria	HER2+BC with treated and non- progressing BM	HER2+or HER2- low BC with asymptomatic untreated BM	HER2+BC with progressing BM after local treatment
Number of patients	8	4	9
Primary endpoint and results	16w PFS 87,5%	IC ORR 50%	IC ORR 44%

- Cohort 4: HER2-low expressing BC with progressing BM after local treatment
- Cohort 5: HER2+or HER2-low expressing BC with LMC

Systemic treatment for NSCLC cancer

	Drug	Trial	n =	Intracranial ORR	CNS PFS	Median OS
NSCLC	Pembrolizumab	NCT02086070 Not previously treated or progressing after RT	37 PDL1 ≥ 1% 5 PDL1 ≤ 1%	29,7% 0%		
NSCLC Adk	Atezolizumab + Carboplatine + Pemetrexed	ATEZO Brain (untreated BM)	40	42,5%	6,9 mo	13,6 mo
EGFRm	Osimertinib	AURA3 (stable aS) BLOOM (LM) FLAURA (stable aS)	116 32 128	70% (efr) 40% (fas) 32% 91% (mes.d) 68%		
	Ceritinib	ASCEND-7 Prior Brain RT Prior ALKi Prior ALKi Prior Brain RT ALKi/RT naive	42 40 12 44	39% 27,6% 28,5% 51,5%		
ALK/ROS1	Alectinib	ALEX (stable aS CNS/LM) Prior RT	122	85,7% 78,6%		
	Brigatinib	ALTA (prior crizotinib – aS) 90mg OD 180mg OD	112 110	46% 56%		29,5 mo 34,1 mo
11311100	Lorlatinib	CROWN aS treated or untreated CNSm	38	66% 82% (mes.d)	96% at 12mo	

ATEZO Brain

Key eligibility criteria

- Treatment naïve Stage IV nonsquamous non-small cell lung cancer
- · Untreated brain metastases
- · EGFR/ALK negative, any PD-L1
- ECOG PS 0-1
- · Measurable systemic and brain lesions
- No neurological symptoms or controlled with anticonvulsants or low dose dexamethasone (≤ 4 mg qd)
- No leptomeningeal carcinomatosis

Tumor evaluation by body CT scan and brain MRI Q6W until the 12th week and thereafter Q9W until PD

CBDCA + Pemetrexed + Atezolizumab Q3W 4-6 cycles Pemetrexed + Atezolizumab Q3W until PD (*), unacceptable toxicity or a maximum of 2 years

Co-primary endpoints:

Safety

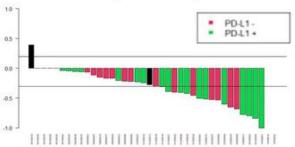
N = 40

Investigator-based PFS by RECIST v1.1 & RANO-BM

Secondary endpoints:

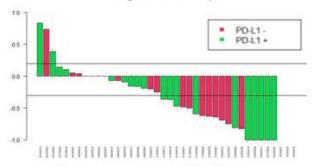
- ORR, Overall Survival
- Time to brain radiotherapy
- QoL, neurocognitive function

ATEZO Brain


Event

Any brain RT	24 (60%)
Death before brain RT	13 (32.5%)
Median time to brain RT (95% CI)	10.9 (7.8 – 15.9)

Type of brain RT				
WBRT	16 (40%)			
Stereotactic RT	8 (20%)			

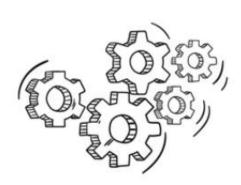

	Systemic ORR	Intracranial ORR
CR	1 (3%)	5 (12.5%)
PR	17 (43%)	12 (30%)
SD	16 (40%)	17 (42.5%)
PD	4 (10%)	5 (13%)
NE	2 (5%)	1 (3%)
ORR	18 (45%)	17 (42.5%)

Best ORR by RECIST v1.1 according to PD-L1 expression

No differences in systemic ORR between PD-L1 positive vs negative (p = 0.264)

Best ORR by RANO-BM according to PD-L1 expression

No differences in brain ORR between PD-L1 positive vs negative (p = 0.104)


Systemic treatment for melanoma

	Drugs	Trial	n =	Intracranial ORR	Extracranial ORR
	Ipilimumab/Nivolumab	Checlmate 204 (Prior RT allowed)	94	57%	56%
		ABC trial (no prior RT	25	44%	38%
BRAFm	Dabrafenib/Trametinib	COMBI-MB V600E no prior RT	76	68%	55%
		V600E no prior RT	16	56%	44%
		V600K/D/R	16	44%	75%
		V600D/E/K/R	17	59%	41%

WHAT IS THE OPTIMAL TREATMENT STRATEGY?

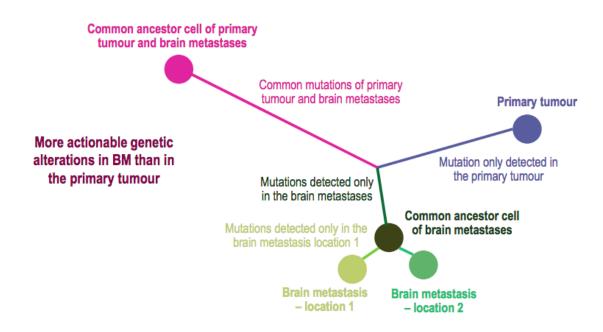
ClinicalTrials.gov

Home > Search Results > Study Record Detail

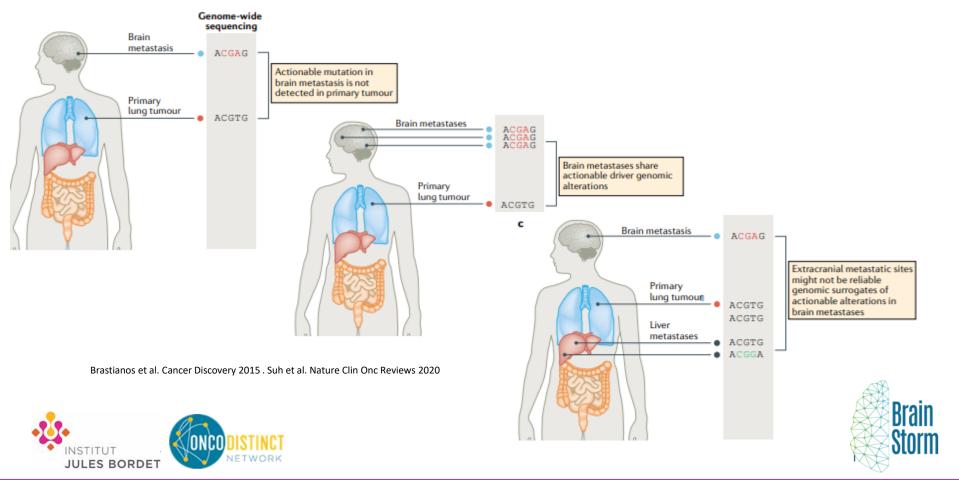
Primary Outcome Secondary Outcome Clinical Trial Location Phase Tx Treatment Arms Measure Measure ABC-X Multicenter. Nivo + Ipi + SRS Two arms, one of Proportion of patients Best response of IC NCT03340129 Australia Nivo + Ipi with dead at 1 year from metastases, best or without SRT or randomization and response of EC hypofractionated whose immediate disease: ORR: for larger lesions cause of death is etc neurologic IPI+RTS Ipi + SRS OS Multicenter. 73 patients Adverse events: ORR in brain: NCT02662725 France global ORR: disease control rate in brain: global disease control rate: PFS BEPCOME-MB SRS +/- Bini + BRAF V600-mutant IC PFS IC RR: IC disease Multicenter. NCT04074096 France Enco + Pembro Arm A: Bini + control; EC RR; Enco + Pembro ORR: PFS: OS: Arm B: SRS followed etc. by Bini + Enco + Pembro NCT02858869 Emory Pembro + SRS Arm A: Pembro + DLTs ORR: OS: rate of University, SRS 6 Gv LMD; etc. Arm B: Pembro + USA SRS 9 Gy Arm C: Pembro, + SRS 18-21 Gv EC best ORR: best RadioCoBRIM Multicenter, Vemu + Cobi Vemu + Cobi after Best IC ORR NCT03430947 Germany radiosurgery in ORR; IC duration BRAF V600of response; EC duration of mutant response; PFS; OS; etc.

 \square §

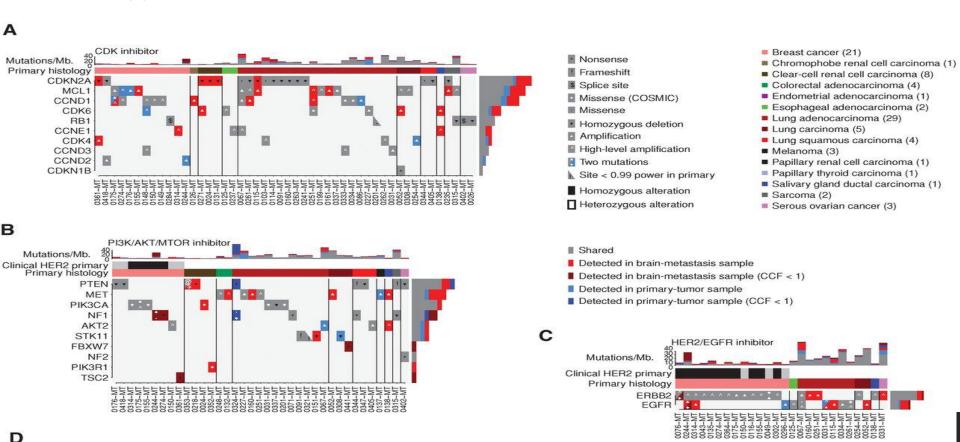
A Randomised Phase II Trial of Osimertinib With or Without SRS for EGFR Mutated NSCLC With Brain Metastases (OUTRUN)


OUTLINE

- Epidemiology
- General considerations for the treatment of CNS metastases
- Clinical trials in CNS metastases
- Systemic treatments for CNS metastases
- Perspectives



CNS metastases: A branched evolution


Actionable mutations in BM, primary tumor and extracranial metastases

From: Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets

Cancer Discov. 2015;5(11):1164-1177. doi:10.1158/2159-8290.CD-15-0369

BRIEF COMMUNICATION

https://doi.org/10.1038/s43018-021-00198-5

Palbociclib demonstrates intracranial activity in progressive brain metastases harboring Table 2 Cyclin-dependent kinase pathway alteratio

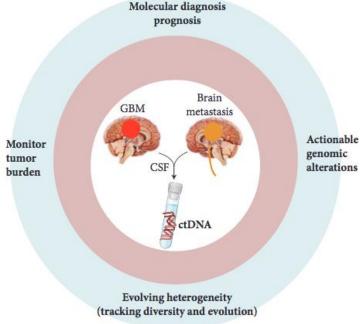

Priscilla K. Brastianos ^{1,4} ^{1,4}, Albert E. Kim ^{1,4}, Nancy Wang¹, Eudocia Q. Lee², Jennife Justine V. Cohen¹, Ugonma N. Chukwueke², Maura Mahar¹, Kevin Oh¹, Michael D. Wh Helen A. Shih¹, Deborah Forst¹, Justin F. Gainor ¹, Rebecca S. Heist¹, Elizabeth R. Gers Tracy T. Batchelor¹, Donald Lawrence¹, David P. Ryan¹, A. John Iafrate¹, Anita Giobbie-I Sandro Santagata ¹, Scott L. Carter², Daniel P. Cahill¹, and Ryan J. Sullivan ¹, S

Table 2 Summary of response data (RANO and RECIST)					
Patient ID	Tumor histology	RANO response (intracranial disease)	RECIST response (extracranial disease)		
1ª	Breast	Stable disease	Stable disease		
2	Breast	Progressive disease	Stable disease		
3ª	Breast	Stable disease	Unevaluable		
4	Melanoma	Progressive disease	Progressive disease		
5ª	Melanoma	Stable disease	Stable disease		
6	Esophageal	Progressive disease	Unevaluable		
7 °	Lung	Stable disease	Progressive disease		
8ª	Lung	Stable disease	Progressive disease		
9	Breast	Progressive disease	Missing		
10	Melanoma	Progressive disease	Stable disease		
11°	Esophageal	Stable disease	Partial response		
12ª	Esophageal	Stable disease	Progressive disease		
13°	Breast	Stable disease	Stable disease		
14 ^b	Melanoma	Progressive disease	Missing		
15⁵	Melanoma	Progressive disease	Missing		

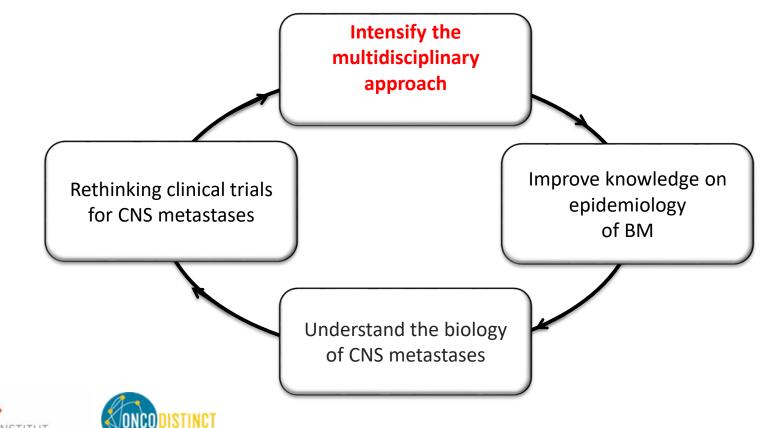
[&]quot;These patients had intracranial benefit (that is, complete response, partial response or stable disease, as defined by RANO). "These patients were enrolled using extracranial tissue (no intracranial tissue was available at the time of enrollment).

Genotyping of primary tumor or extracranial metastatic site **might miss** actionable oncogenic driver mutations...

- •Mutation related to drug resistance
- Activation of an alternative signalling pathway
- Alteration in the drug activating site

Brain biopsies are often considered as an invasive approach:

CSF ctDNA as a surrogate for BM DNA?



Studies on ctDNA sequencing in CSF of CNS metastases

Study	Site of CNS malignancy	n	Primary	Biological fluid sampled	Sequencing method	CNS malignancy mutation detection rate
Swinkels et al, 2000	LM	2	Lung Adenocarcinoma	CSF	Mutation allele-specific amplification (PCR)	KRAS mutation detectable in CSF (2/2) (100%)
De Mattos et al, 2015	Р	12	6 BC, 2 LC, 4 GBM	CSF, Plasma	Targeted sequencing 341 genes, WES	CNS disease only 58% CSF, 0% plasma, CNS / Non CNS disease 60% CSF, 55.5% plasma
Momtaz et al, 2016	P, LM	11	Patients with <i>BRAF</i> m malignancies	CSF	Targeted sequencing	<i>BRAF</i> m 6/11 54%
Pentsova et al; 2016	P, LM	41	11 LC, 11 BC, 6 melanoma, 1 BC, 2 GI, 2 OC, 1 NE, 2 Thyroide, 2 prostate, 2 RCC, 1 sarcoma	CSF	Targeted sequencing	Mutations detectable in CSF 20/32 (63%) with BM and 75% pts with LM
Marchio et al, 2017	LM	2	Lung Adenocarcinoma	CSF, plasma	Targeted sequencing	KRAS mutation in the CSF (2/2 -100%)
Siravegna et al, 2017	Р	1	HER2+ breast CSF adenocarcinoma	CSF plasma	ddPCR	ERBB2, CNYC, TP53; PIK3CA
Fan et al, 2018	LM	11	EGFR-mutated NSCLC	CSF	Targeted sequencing	EGFRm 11/11 (100%) , not concordant (1/11)
Li et al, 2018	LM	42	EGFR-mutated NSCLC	CSF	Targeted sequencing	EGFRm 92% (28)
Huang et al, 2018 BC: breast cancer; LC: Lung car	LM cer, GBM: Glioblastoma; GI:	1 gastrointest	Adenocarcinoma of unknown nal, OC: ovarian cancer; NE: Newro-endocrine; RCC: re	CSF nal cell cancer	Targeted sequencing	HER2 and MPL amplification PIK3CA, CDKN2A, P53m

Challenges for the management of CNS metastases

JULES BORDE

Brainstorm Program Objectives

Cohort 1:TNBC

Cohort 2: HER2+ BC Cohort 3: NSCLC Cohort 4: SCLC

Cohort 5: Melanoma

Cohort 6: Other solid tumours

Cohort 7: LMC

Implementation of clinical trials

CNS EVENT

PRE-DIAGNOSIS
Part A

AT 1st CNS DIAGNOSIS Part B

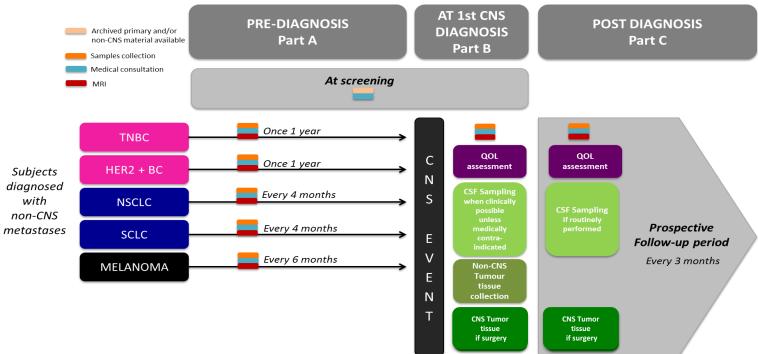
POST DIAGNOSIS Part C

Constitute a large clinicopathological database for CNS metastases

- To better understand the evolving epidemiology of CNS metastases
 - To better understand the biology of CNS metastases

Develop primary prevention and early prevention strategies

Develop innovative treatment strategies



Develop innovative secondary prevention and treatment strategies

Study Design

Sponsor Protocol Number: IJB-BS-ODN-006 ClinicalTrials.gov Number: NCT04109131

Thank you for your attention!

