

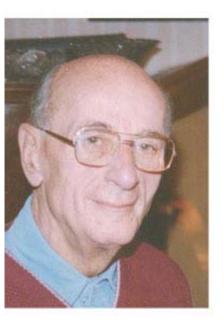
PBMT for mucositis and radiodermatitis

Jolien Robijns, MSc, PhD Jeroen Mebis, MD, PhD Jessa Hospital, Hasselt Hasselt University, Hasselt Laser centre

Post-MASCC 2018 23/11/2018 Parker Hotel Brussels Airport, Diegem

Outline part 1

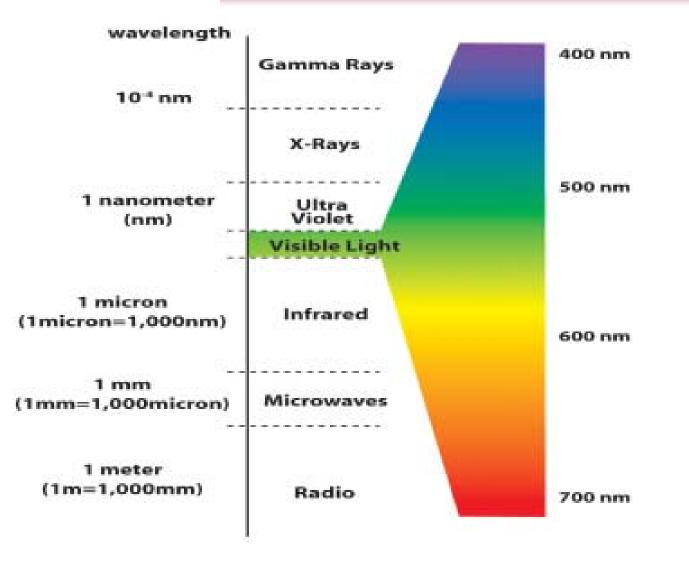
What is PBMT?


PBMT for mucositis: update

Safety issues?

Low-level laser

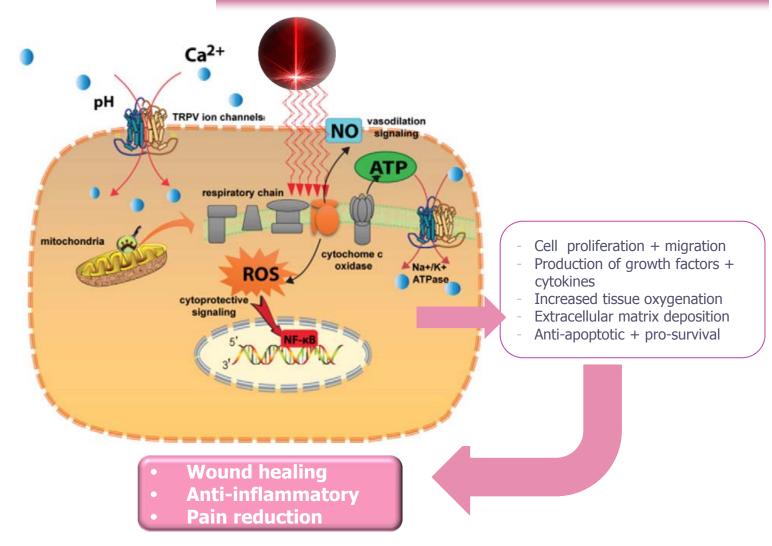
1967
Endre Mester, Budapest
"effects of laser on skin cancer"



Hamblin, M. et al. Low-Level Light Therapy: Photobiomodulation. SPIE press, 2018.

Electromagnetic spectrum

Hamblin, M. et al. Low-Level Light Therapy: Photobiomodulation. SPIE press, 2018.

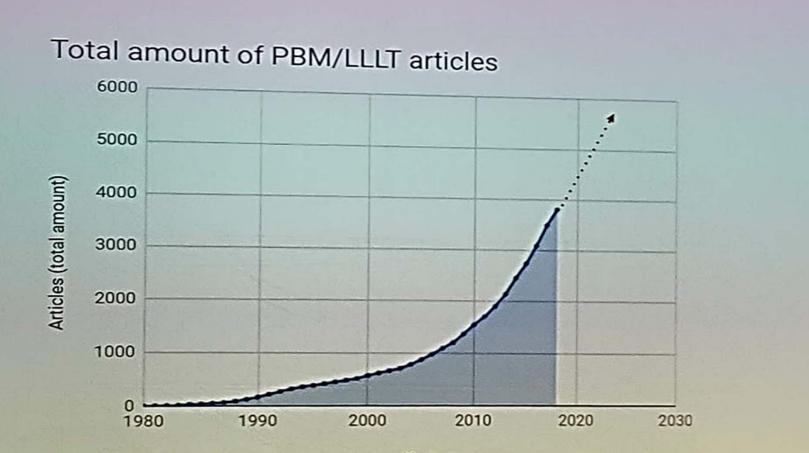


High vs Low-level lasers

High	Low
Surgical lasers	Medical lasers
Hard lasers	Soft lasers
Thermal	Energy 1-500 mW
Energy : 3000-10000mW	600-1000 nm light

Biological effects

Hamblin, M. et al. Low-Level Light Therapy: Photobiomodulation. SPIE press, 2018. Robijns, J. et al. BELG J MED ONCOL 2017



Research

- Since 1967: >400 double blind, RND trials
- first clin application: wound healing
- ✓ Experiences from lab and clinic:
 - Reduction inflammation
 - Prevention fibrosis
 - Reduces pain
 - Neuroprotective

Research

Year

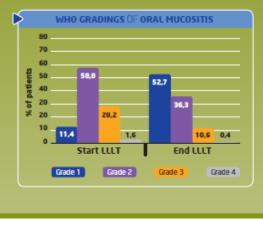
Our own experience

LLLT in breast cancer patients: retrospective analysis

Table 1. Patients' status at the start and the end of Low Level Laser Therapy (LLLT)

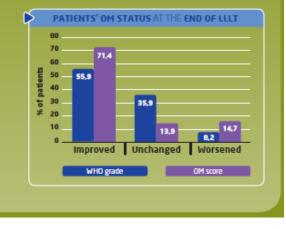
Outcome	Start LLLT	End LLLT	N improved
Mean number of treated areas	3.89	2.16*	66 (71%)
Mean OM score	6.60	2.78*	75 (80.6%)
Mean pain score ^a	5.14	1.64*	20 (90.9%)
N (%) WHO grade 1	11 (11.8%)	60 (64.5%)*	60 (64.5%)

^a Pain scores were available for 22 (of the 93) patients. * *p* < 0.0001 (t-test or chi-square, as appropriate).


Our own experience

LLLT in cancers other than head and neck cancer.

PA	TIENTS' CHARA	CTERISTICS (N = 245)	
▶ Age (years)		▶ Tumour Stage	N (%)
Mean (M)	59.56		4 (1.63)
Standard deviation (SD)	11.80		17 (6.94)
Tumour Location	N (%)		61 (24.90)
Brain	3 (1.22)		59 (24.08)
Breast	100 (40.82)		51 (20.82)
Colorectal	31 (12.65)	Unknown	53 (21.63)
Gastro-Intestinal	19 (7.76)		
Gynaecologic	13 (5.31)	Cancer therapy	N (%)
Hematologic	10 (4.08)	Chemotherapy	183 (74.69
Lung	17 (6.94)	Chemo-radiotherapy	27 (11.02)
Neuroendocrine	5 (2.04)	Radiotherapy	ZZ (8.98)
	4 (1.63)		
Urogenital		Unknown	4 (1.63)
Unknown	17 (6.94)		
Number of LLLT sessions re	eceived	Time since start cancer the start can	herapy (days)


2. OM GRADINGS

At the end of LLLT, there was a **significant improvement** of OM ($p \le .0001$), with an increased proportion of patients with OM grade 1 (and a decrease of OM \ge grade 2).

3. OM SCORES

- OM scores significantly decreased (M = 3.66 at the end vs 6.67 at the start of LLLT, p < .0001)
- At the end of LLLT, patients were categorised according to their status (OM worsened, unchanged, or improved), based on their (highest) WHO grades and OM scores:

Annals of Oncology (2014) 25 (suppl_4): iv517-iv541. 10.1093/annonc/mdu356

11 RCT

Table 1 Trial characteristics

First author (year)	Patient numbers (cancer therapy)	Wavelength (nm)	Laser output (mW)	Spot size (cm2)	Dose (J)	Irradiation time (s)	Outcomes and effect (+/-)
Cowen 1997	30 (chemo/radio)	633	30	0.5	3.5	105	Days+/OMI+
Bensadoun 1999	30 (radiation)	633	60	0.5	2	33	Pain+/OMI+
Arun Maiya 2006	50 (radiation)	633	10	1.0	4	600	Pain+/OMI+
Schubert 2007	70 (transplant)	650/780	40/60	0.04	2	33-50	655 nm only pain+/OMI+
Cruz 2007	60 (chemo/child)	633	50	0.04	0.18	3	n.s.
Kuhn 2007	34 (chemo)	830	100	0.06	6	54	Days+/OMI+
Antunes 2007	38 (transplant)	660	47	0.2	4	17	Pain+/WHO+
Genot- Klastersky 2008	36 (chemo)	650	100	0.45	5	33	Days+/OMI+
Kuhn 2009	21 (chemo/child)	830	100	0.06	6	56	Days+/OMI+
Abramoff 2009	22 (chemo)	685	35	0.5	3	54	Days+/OMI+
Chor 2009	24 (chemo)	660	50	?	2	40	Days+/others-

First column identifies trial by first author's last name and the publication year. Other columns represent: sample size (type of cancer therapy), laser wavelength in nm, laser output in mW, spot size in cm^2 , dose in Joules, irradiation time per point, outcomes reported including mucositis severity scales (WHO or OMI), pain and duration of OM in days and dichotomized overall results given by: (+) significantly in favour of LLLT or (-) non-significant between LLLT and placebo

	Place	bo	Laser th	erapy		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.4.1 Subgroup doses >	1 Joules						
Abramoff 2007	8	11	3	11	13.7%	2.67 [0.95, 7.47]	
Antunes 2007	17	19	7	19	18.6%	2.43 [1.32, 4.46]	
Chor 2009	12	17	8	17	18.8%	1.50 [0.83, 2.71]	+
Genot-Klastersky 2008	15	18	3	18	13.5%	5.00 [1.74, 14.34]	
Maiya 2006 Subtotal (95% CI)	25	25 90	7	25 90	18.6% 83.3%		
Total events	77		28				
Heterogeneity: Tau ² = 0. Test for overall effect: Z 1.4.2 Subgroup doses	= 4.70 (P	< 0.00	0001)				
Cruz 2007 Subtotal (95% CI)	/	31 31	13	29 29	16.7% 16.7%		-
Total events Heterogeneity: Not appli Test for overall effect: Z		= 0.08	13				
Total (95% CI)		121		119	100.0%	2.03 [1.11, 3.69]	-
Total events	84		41				
Heterogeneity: $Tau^2 = 0$.	41; Chi2	= 19.88	8, df = 5 (P = 0.00	(1); $ ^2 = 7$	5%	
Test for overall effect: Z					Soltan al R		0.1 0.2 0.5 1 2 5 1 Favours placebo Favours laser

Doses 1-6J Reduction of OM prevalence, severity, duration and pain.

RCT 18

	Laser the	rapy	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Antunes 2007	1	19	13	19	6.1%	0.08 [0.01, 0.53]	
Antunes 2013	3	47	19	47	10.5%	0.16 [0.05, 0.50]	_
Arbabi Kalati 2013	0	24	10	24	3.6%	0.05 [0.00, 0.77]	← →
Chor 2010	4	17	7	17	11.3%	0.57 [0.20, 1.60]	
Gautam (a) 2012	26	111	77	110	16.0%	0.33 [0.23, 0.48]	-
Gautam (b) 2012	16	55	49	55	15.7%	0.33 [0.21, 0.50]	
Hodgson (a) 2012	12	20	9	20	14.5%	1.33 [0.73, 2.44]	- -
Hodgson (b) 2012	12	20	11	20	15.0%	1.09 [0.64, 1.86]	+
Khouri 2009	0	12	5	10	3.6%	0.08 [0.00, 1.24]	← · · · · · · · · · · · · · · · · · · ·
Silva 2011	0	21	6	21	3.6%	0.08 [0.00, 1.28]	·
Total (95% CI)		346		343	100.0%	0.37 [0.20, 0.67]	◆
Total events	74		206				
Heterogeneity: Tau ² =	= 0.55; Chi ²	= 44.46	, df = 9 (F	< 0.00	0001); I ^z =	80%	
Test for overall effect	Z = 3.29 (P	= 0.00	10)				0.01 0.1 1 10 100 Favors (Laser therapy) Favors (Placebo)

Figure 2. Forest plot of overall incidence of severe (grade 3 or 4) mucositis. Squares to the left of the vertical line indicate that low level laser therapy reduces mucositis. Horizontal lines through the squares represent 95% confidence intervals (CIs). The size of the squares reflects each study's relative weight, and the diamond represents the aggregate risk ratio and 95% CI. doi:10.1371/journal.pone.0107418.g002

Table 2. Summary of outcomes of low level laser therapy as compared to placebo/no treatment.

Outcome	Number Studies	Number Patients	Effect	95% CI [¥]	l ²	Ρ
Overall incidence of severe (grade 3 or 4) mucositis	10	689	RR 0.37	0.20 to 0.67	80%	0.001
Incidence of severe (grade 3 or 4) mucositis at anticipated time of maximal mucositis*	6	546	RR 0.34	0.20 to 0.59	62%	0.0001
Overall mean grade of mucositis	8	603	SMD - 1.49	-2.02 to -0.95	86%	<0.0001
Duration of severe (grade 3 or 4) mucositis	3	361	WMD -5.32	-9.45 to -1.19	94%	0.01
Incidence of any pain	7	591	RR 0.89	0.76 to 1.04	96%	0.15
Incidence of severe pain**	2	331	RR 0.26	0.18 to 0.37	0%	<0.0001
Overall mean pain scores	5	222	WMD -2.46	-4.41 to -0.77	97%	0.004
Number of patients requiring opioid analgesia	5	530	RR 0.47	0.37 to 0.60	0%	<0.0001
Unplanned radiotherapy interruption due to mucositis in head and neck cancer patients	5	560	RR 0.23	0.12 to 0.44	0%	<0.0001

Abbreviations: RR - risk ratio; SMD - standardized mean difference; WMD - weighted mean difference; CI - confidence interval;

*Maximum anticipated mucositis was week 6±1 in head and neck cancer radiotherapy/chemo-radiotherapy trials and day 10±4 in chemotherapy and hematopoietic stem cell transplantation trials (from date of chemotherapy initiation and stem cell infusion respectively).

** Severe pain defined as a visual analogue scale score >7.

^{*}All analyses used a random-effect model. A risk ratio <1 and a standardized mean difference or weighted mean difference <0 with 95% CIs that do not include 1 or 0 respectively, suggest that low level laser is better than placebo/no therapy.

doi:10.1371/journal.pone.0107418.t002

Table 3. Effect of low level laser therapy as compared to placebo/no therapy on overall incidence of severe (grade 3 or 4) mucositis stratified by patient, laser and risk of bias characteristics.

Subgroup	Number Studies	Number patients	RR	95% Cl [¥]	P for interaction
Population Age					0.90
Adult	8	607	0.33	0.18 to 0.59	
Pediatric or both adult/pediatric	2	82	0.41	0.02 to 10.87	
Underlying Condition					0.85
Chemotherapy or HSCT	7	264	0.35	0.13 to 0.98	
Head and neck cancer radiotherapy/chemo-radiotherapy	3	425	0.32	0.24 to 0.42	
Type of Laser Delivery					< 0.0001
Intraoral	8	609	0.29	0.19 to 0.42	
Extraoral	2	80	1.19	0.80 to 1.78	
Energy Density of Laser					0.06
≤4 J/cm2	8	619	0.43	0.23 to 0.78	
>4 J/cm2	2	70	0.06	0.01 to 0.43	
Participants, Personnel and Assessors Blinded					0.11
Yes	8	625	0.42	0.23 to 0.76	
No or unclear	2	64	0.08	0.01 to 0.56	
Allocation Concealment Adequate					0.03
Yes	4	411	0.61	0.30 to 1.25	
No or unclear	6	278	0.16	0.07 to 0.41	

Abbreviations: RR – risk ratio; CI – confidence interval; HSCT – hematopoietic stem cell transplantation.

^{*}All analyses used a random-effect model. A risk ratio <1 with 95% CIs that do not include 1, suggests that low level laser is better than placebo/no therapy. doi:10.1371/journal.pone.0107418.t003

TABLE 2. Summary of reviews with meta-analysis investigating the use of PBMT for the prevention and management of OM in cancer patients.

First author (ref.)	Year	Publication type	Type + num- ber of stud- ies included	Sam- ple size	Wavelength (nm)	Power (mW)	Energy density (J/cm²)	Laser schedule	Results
Bjordal ¹⁵	2011	Systematic review with meta-analysis	11 placebo- controlled RCTs	415	- Red (633– 685) - Infrared (780–830)	-Red (10-60) -Infrared (50- 100)	1-6 J/ point	Minimum 3 sessions/ week	Reduced OM prevalence, severity, duration, and associated pain.
Migliorati ¹⁷	2012	Systematic review with meta-analysis	24 clinical trials	NA	400-1200	10-500	2-70	NA	Recommenda- tion: - Prevention of OM in adult pa- tients receiving HSCT (650 nm, 40 mW, and 2 J/cm ²). Suggestion: - Prevention of OM in HNC pa- tients under- going RT with- out CTx(632.8 nm).
Oberoi ¹⁶	2014	Systematic review with meta-analysis	18 RCTs and quasi-RCTs	1144	632.8-780	10-100	1.5-6.3	5 sessions/ week - daily	Prophylactic PBMT reduced severe OM and pain in patients with cancer and HSCT recipients.

Partially adapted from Robijns et al. (2017)⁵

Abbreviations: OM, oral mucositis; CTx, chemotherapy; HNC, head and neck cancer; HSCT, hematopoietic stem cell transplantation; RCT, randomised controlled trial; NA, not available; ref, reference; PBMT, photobiomodulation therapy.

MASCC/ISOO

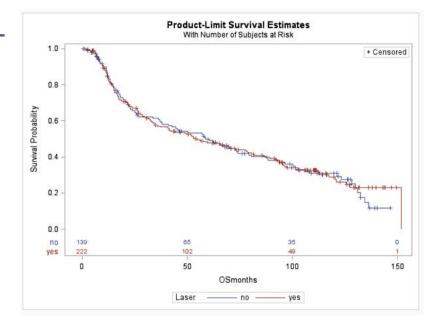
- Recommendation for prevention of OM in HDSCT +- TBI
- Recommendation for prevention of OM in HeN RT
- Recommendation for prevention of OM in HeN RT + CT
- FSMO
- NCCN

Guidelines

Complication Treatment protocol	Treatment area	PBM device characteristics and application	Therapeutic PBM dose	Optional target tissues
OralProphylactic:MucositisChemotherapy: Protocols vary.Start PBM treatment at first day of CT or prior to therapy and continue during all courses of chemotherapyRadiotherapy:Radiotherapy:Start PBM treatment the first day of RT or prior to RT and continue during all days of RT (no requirement regarding the timing of PBM sessions, before or after RT session)Therapeutic:Continue treatment at least 3 times a week until symptoms improveDaily treatment is recommended in case of severe mucositis		<i>Extra-oral</i> : IR LED cluster or mixed red and IR LED cluster 20–80 mW cm ⁻² <i>Intra-oral</i> : 630–830 nm 20–80 mW	Extra-oral: 3 J cm ⁻² IR LED cluster Intra-oral: Prophylactic: 2 J per point Therapeutic: 4 J per point until the whole area involved is covered (2 J for prophylactic use)	<i>Extra-oral</i> : Lips, cutaneous surface corresponding to the buccal mucosae, bilateral cervical lymphatic chain <i>Intra-oral</i> : <i>Prophylactic</i> : treat each of the at risk mucosal surfaces <i>Therapeutic</i> : sites vary, depending upon the site of mucositis

- PBM has been shown to promote cell proliferation, angiogenesis, analgesia/pain control
- Mechanisms: Cytochrome C Oxidase, electron transport ATP, NO
- Growth factors, anti-inflammatory cytokines, HSP, MMP, ROS
- // Are cell-cultures sufficient?

- PBM therapy with visible and nearinfrared sources are safe (nongenotoxic, non-mutagenic)
- PBM treatments have differential effects on cells of discrete lineages
- PBM treatments evoke different
 responses in normal and cancer stem
 cells



Retrospective analysis of potential stimulation of tumor growth by PBM used for management of therapy-induced mucositis in head and neck cancer patients.

361 pts

- 139 (39%) without LLLT
- 222 (62%) with LLLT

Overall survival (OS) is defined as time from diagnosis till date of death. Patients alive at last follow-up are censored at the date of last follow-up \rightarrow 232 OS events

There is no statistical evidence for a difference in overall survival between patients with and without low level laser (LLL): P-value 0.86 (logrank test). 5-year OS •in patients without LLL: 50% •in patients with LLL: 48% Hazard ratio (laser vs not): 0.98 (95% CI, 0.75 to 1.27)

courtesy of MT Genot-Klastersky et al. IJB; WALT Congress, 2018

Supportive Care in Cancer (2018) 26:2417–2423 https://doi.org/10.1007/s00520-018-4046-z

ORIGINAL ARTICLE

Locally advanced oral squamous cell carcinoma patients treated with photobiomodulation for prevention of oral mucositis: retrospective outcomes and safety analyses

```
Thaís Bianca Brandão<sup>1,2</sup> · Karina Morais-Faria<sup>1,2</sup> · Ana Carolina Prado Ribeiro<sup>1,2,3</sup> · César Rivera<sup>2</sup> · João Victor Salvajoli<sup>4</sup> · Marcio Ajudarte Lopes<sup>2</sup> · Joel B. Epstein<sup>5,6</sup> · Praveen R. Arany<sup>7</sup> · Gilberto de Castro Jr<sup>8</sup> · Cesar Augusto Migliorati<sup>9</sup> · Alan Roger Santos-Silva<sup>1,2</sup>
```

- Retrospective analysis, 152 advanced OSCC pts, prophylactic OM, 1/2009-12/2014
- 12,5% St III, 87,5% st IV
- 34,2% HK ; RT
- 61,8% CRT
- 4% ICT; HK+RT

Supportive Care in Cancer (2018) 26:2417-2423 https://doi.org/10.1007/s00520-018-4046-z

ORIGINAL ARTICLE

CrossMark

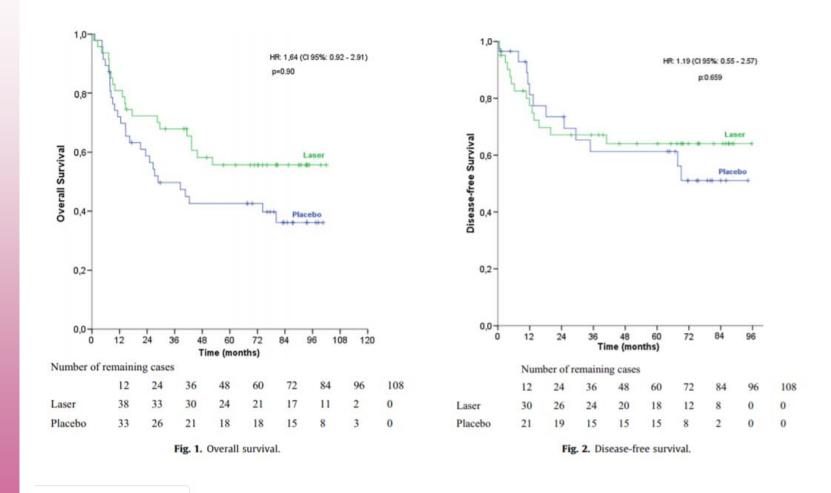
Locally advanced oral squamous cell carcinoma patients treated with photobiomodulation for prevention of oral mucositis: retrospective outcomes and safety analyses

Thaís Bianca Brandão^{1,2} • Karina Morais-Faria¹² • <u>Ana</u> Carolina Prado Ribeiro^{1,2,3} • César Rivera² • João Victor Salvajoli⁴ • Marcio Ajudarte Lopes² • Joel B. Epstein^{5,6} • Praveen R. Arany⁷ • Gilberto de Castro Jr⁸ • Cesar Augusto Migliorati⁹ • Alan Roger Santos-Silva¹²

Table 3 Summary of results reported in the literature from randomized controlled trials including treatment outcomes and survival rates of patients with oral squamous cell carcinoma treated with multimodal therapy. *OS* overall survival, *DFS* disease-free survival, *CT* chemotherapy, *y* year

Author	Year	No. patients	Stage	OS%	DFS%	Local-regional relapse	Distant relapse	Second primaries
Licitra et al. 2003 [13]	1989-1999	195	II–IV	57% (5 y)	_	31%	6.1%	8.2%
Including CT Excluding CT				68.2% (2 y)	63.6% (2 y)	30.5%	8.7%	-
Zhong et al. 2013 [14]	2008-2010	256	III or IVA					
Including CT				68.8% (2 y)	62.2% (2 y)	31.3%	5.5%	_
Excluding CT				68.2% (2 y)	63.6% (2 y)	30.5%	8.7%	_
Bossi et al. 2014 [15]	-	198	II–IV					
Including CT				46.5% (10 y)	48.5% (10 y)	29.6% (10 y)	4.1% (10 y)	10.6%
Excluding CT				37.7% (10 y)	36% (10 y)	32% (10 y)	9.3% (10 y)	22.1%
Zhong et al. 2015 [16]	2008-2015	256	III or IVA					
Including CT				61.1% (5 y)	52.7% (5 y)	31.3%	7%	3.1%
Excluding CT				61.1% (5 y)	52.7% (5 y)	39.1%	10.9%	7%
Current series	2009–2014	152	III–IV	46.7% (3.4 y)	51.8% (3.4 y)	29.6%	6.57%	12.5%

	Contents lists available at ScienceDirect	8RAL NCOLOGY
	Oral Oncology	X
ELSEVIER	journal homepage: www.elsevier.com/locate/oraloncology	


Long-term survival of a randomized phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis

Héliton S. Antunes^{a,*}, Daniel Herchenhorn^b, Isabele A. Small^a, Carlos M.M. Araújo^c, Celia Maria Pais Viégas^c, Gabriela de Assis Ramos^a, Fernando L. Dias^d, Carlos G. Ferreira^e ^a Clinical Research Division, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil

- 94 pts with oro, naso and hypopharynxca in phase III trial
- Evaluation from 2007-2015
- CRT (HD CDDP)
- // LLLT (660nm-100mW-1J-4J/cm2)
- Med FU 41,3 months

Antunes et al. Oral Oncology, 71 (2017), 11-15

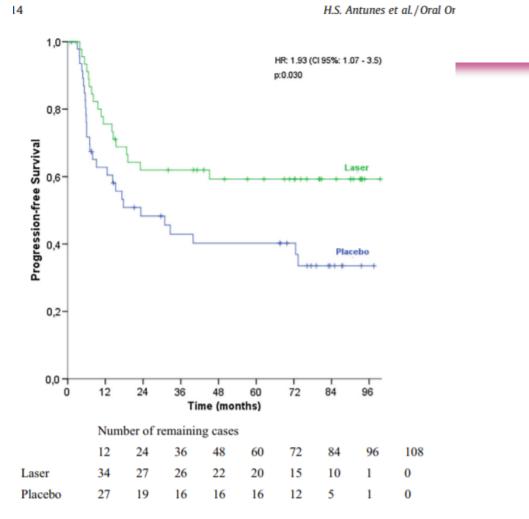


Fig. 3. Progression-free survival.

Antunes et al. Oral Oncology, 71 (2017), 11-15

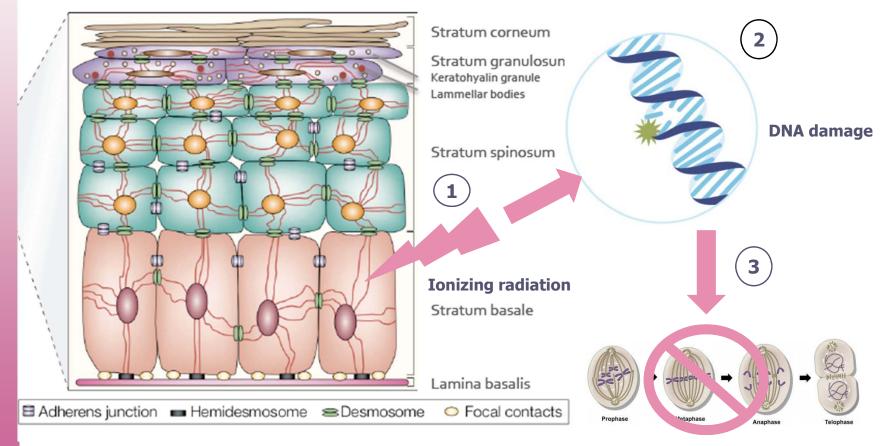
Newer approaches

 Treatment of radiation fibrosis in Head and neck cancer patients
 Treatment of GVHD

Conclusion part 1

- PBM recommended in OM treatment in most guidelines
- Safety seems reconfirming in vitro and in vivo in appropriate doses
 - Preclinical in-vivo models needed
 - Short and long term cancer outcomes
 - Consistency of PBM parameters

Outline part 2


- Radiodermatitis
- PBMT and radiodermatitis
 - Previous research
 - Our own experience
- Conclusion
- Future perspective

r

Acute radiodermatitis (RD)

What? Inflammatory skin reaction at the irradiated area

Wells, M. and S. MacBride, Radiation skin reactions, 2003. Robijns et al. JEWDS, 2018. Mitotic cell death

Acute radiodermatitis (RD)

Patient experience

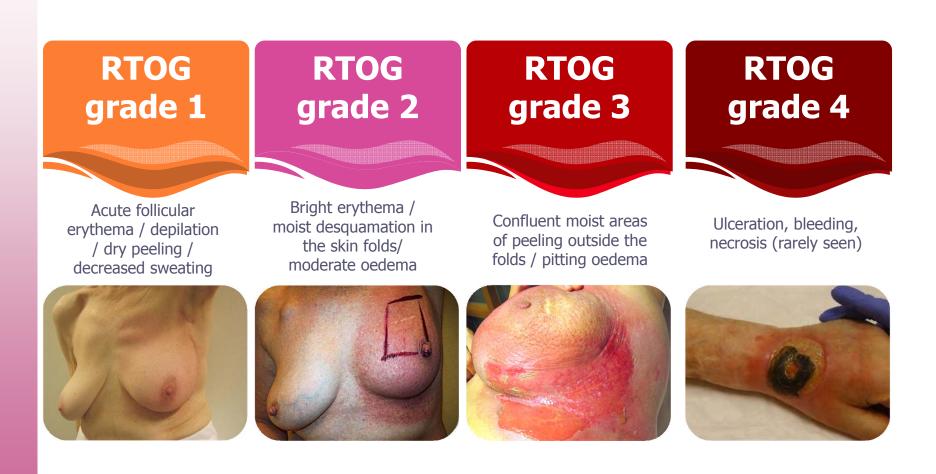
- Pain
- Burning sensation
- Itching

- Affects daily activities → Quality of life
- Radiotherapy interruption

Prevention & treatment

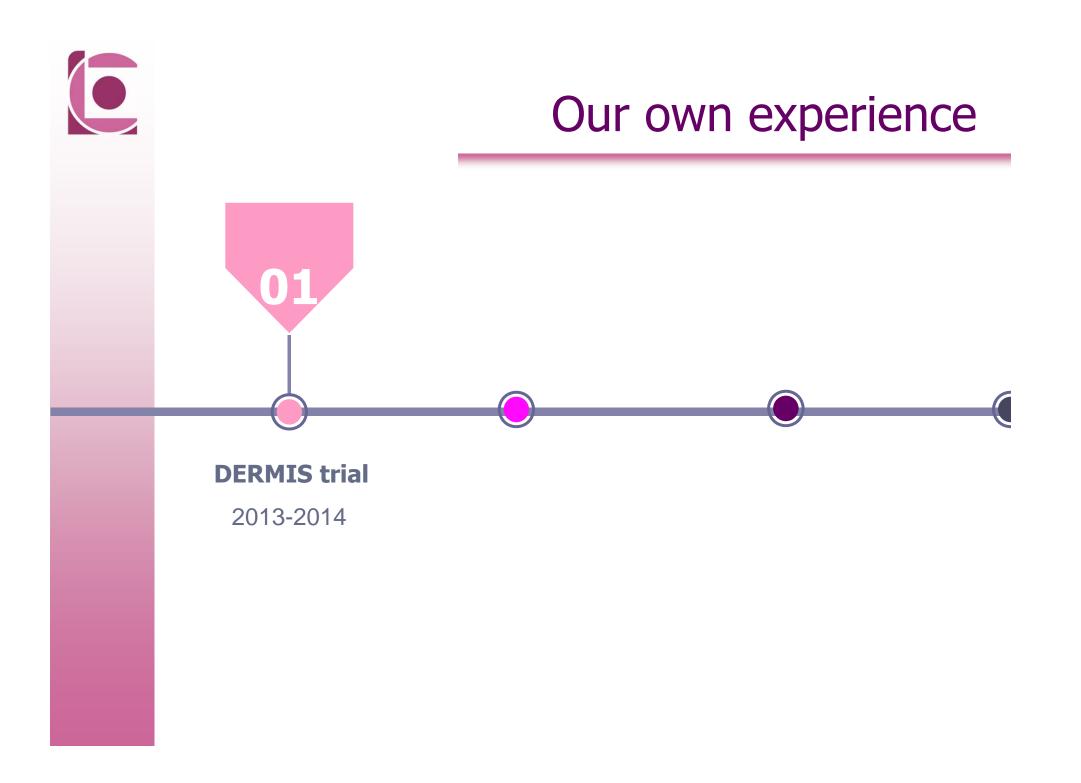
- General skin care advice
- Hydrating creams/gels
- Topical steroids
- Wound dressings

No consensus on standardised guidelines



Singh, M et al. Am J Clin Dermatol, 2016.

Grading acute RD Radiotherapy Oncology Group Criteria



PBMT and acute RD

	Schindl et al.(1999)	DeLand et al. (2007)	Fife et al. (2010)	Strouthos et al. (2017)
PBMT type •Wavelength •Fluence •Irradiance	Laser diode •632.8 nm •30 J/cm ² •3 mW/cm ²	LED •590 nm •0.15 J/cm ² •Not specified	LED •590 nm •0.15 J/cm ² •Not specified	LED •660 + 850 nm •0.15 J/cm ² •44.6 mW/cm ²
Patient type PBMT set up	Limited scientific evidence			
Control group	/	Retrospective	Placebo	Institutional skin care
Results	Accelerated wound healing	Significantly reduced incidence of RD grade ≥ 2	No significant effects	Significantly reduced incidence of RD grade ≥ 2

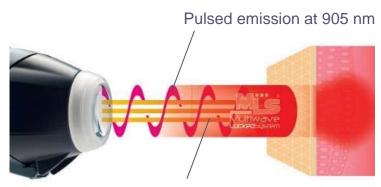
Schindl et. al. Photodermatology, photoimmunology & photomedicine, 1999 DeLand et.al. Lasers in Surgery and Medicine, 2007. Fife et. al. Dermatol Surg, 2010 Strouthos et. al. Strahlenther Onkol, 2017

Goal

Investigate the efficacy of PBMT in the **treatment** of ARD in **breast cancer patients** undergoing RT

DERMIS trial

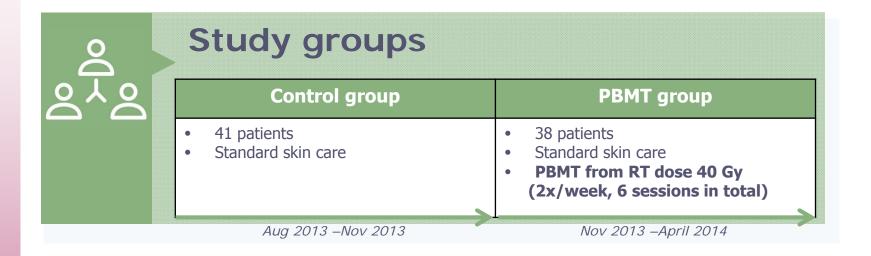
Study design Prospective, quasi-experimental study


- Breast cancer patients
- Post-lumpectomy
- RT regimen: 25x2Gy (whole breast) + 8x2Gy (boost)
- Jessa Hospital– LOC (Hasselt)

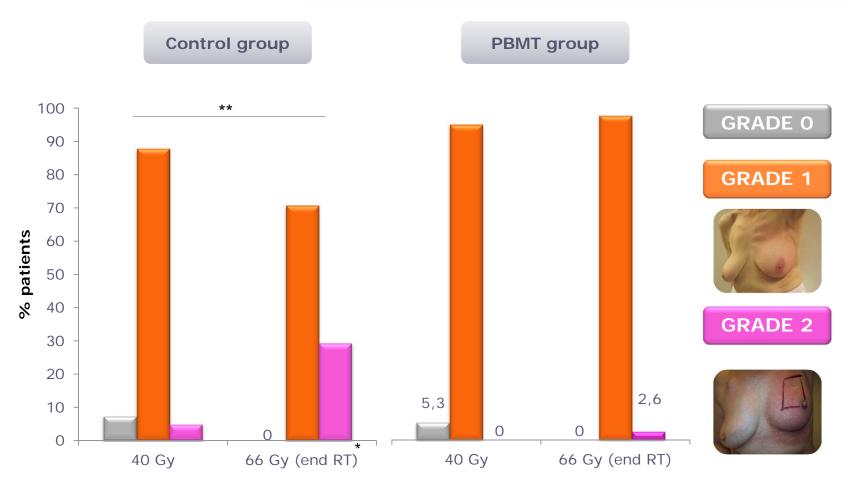
DERMIS trial

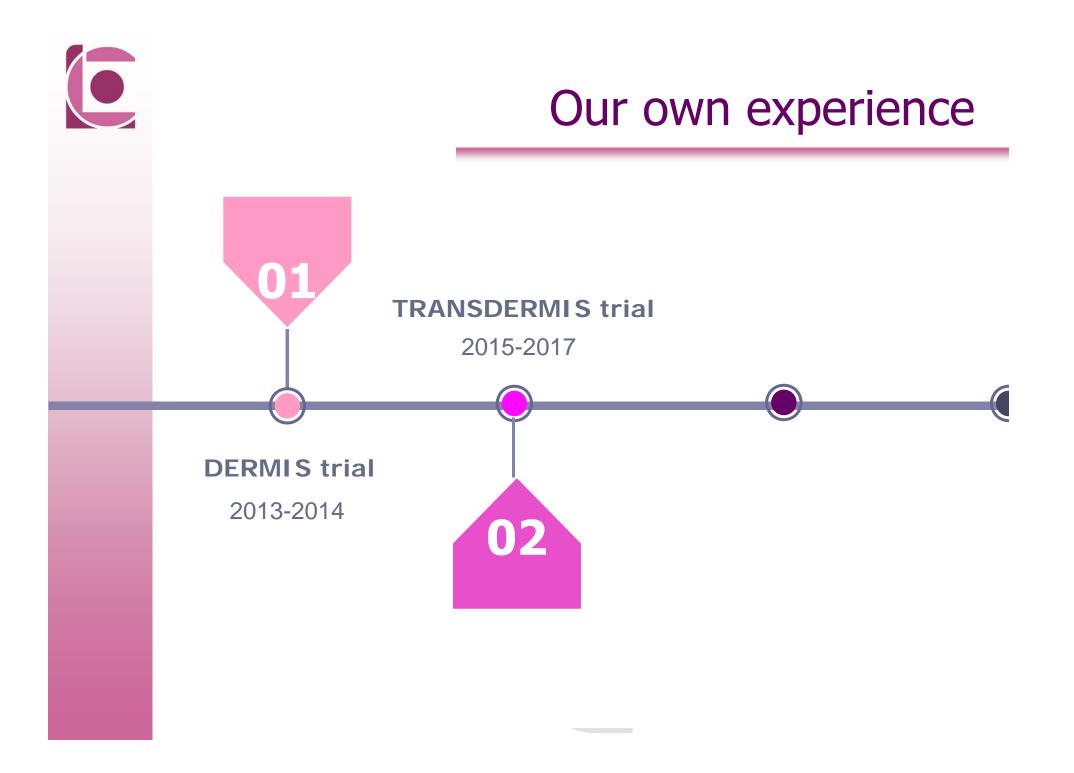
PBMT

Parameter	Laser diode 1	Laser diode 2	
Emission mode	Pulsed mode	Continuous mode	
Wavelength	905 nm	808 nm	
Dose	4 J/cm ²		
Treatment area	Whole breast, axilla, inframammary fold		
Treatment time	10-15 min. depending on the size of treated area		


Continuous emissions at 808 nm

DERMIS trial




Outcome measures

- RTOG score
- Time points:
 - Fraction 20 RT
 - End RT

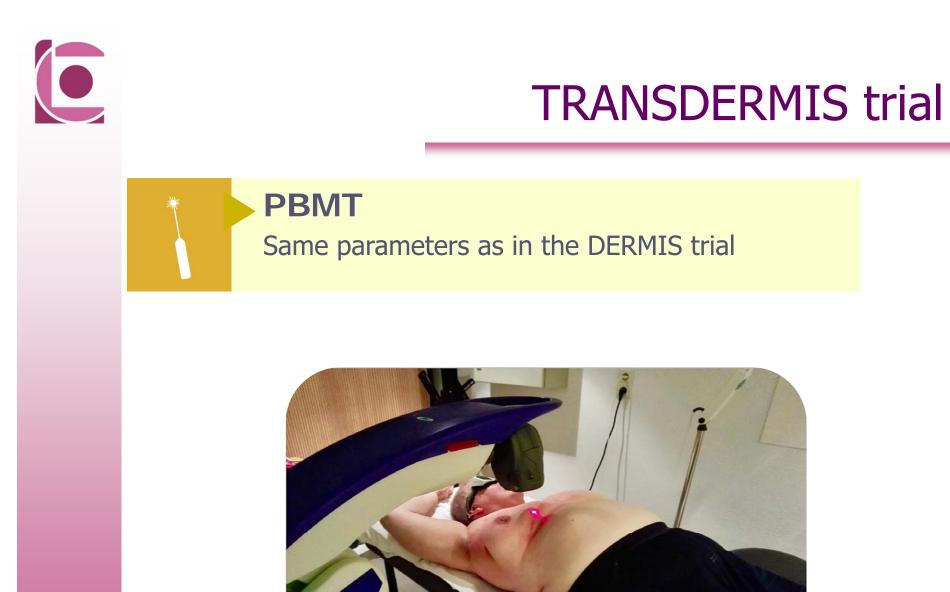
*p< 0.005; **p<0.001 (chi-square test, two-sided)

TRANSDERMIS trial

Goal

Investigate the efficacy of PBMT in the **prevention** of ARD in **breast cancer patients** undergoing RT

TRANSDERMIS trial



Study design

Prospective, randomized placebo-controlled trial

Patients

- Breast cancer patients
- Post-lumpectomy
- RT regimen: 25x2Gy (whole breast) + 8x2Gy (boost)
- Jessa Hospital– LOC (Hasselt)

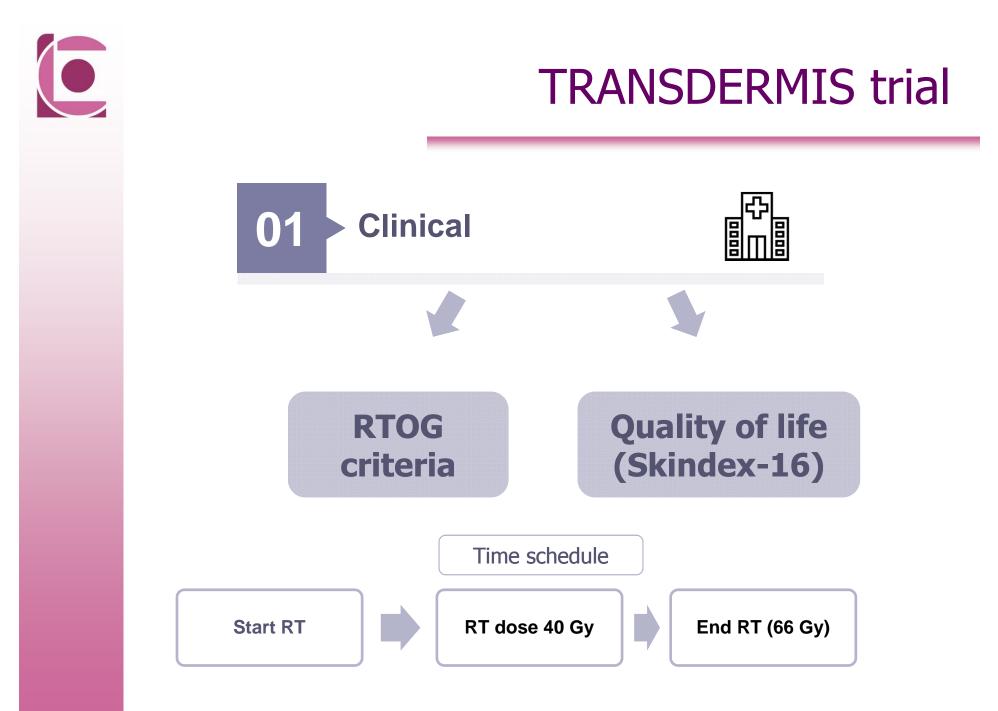
0

TRANSDERMIS trial

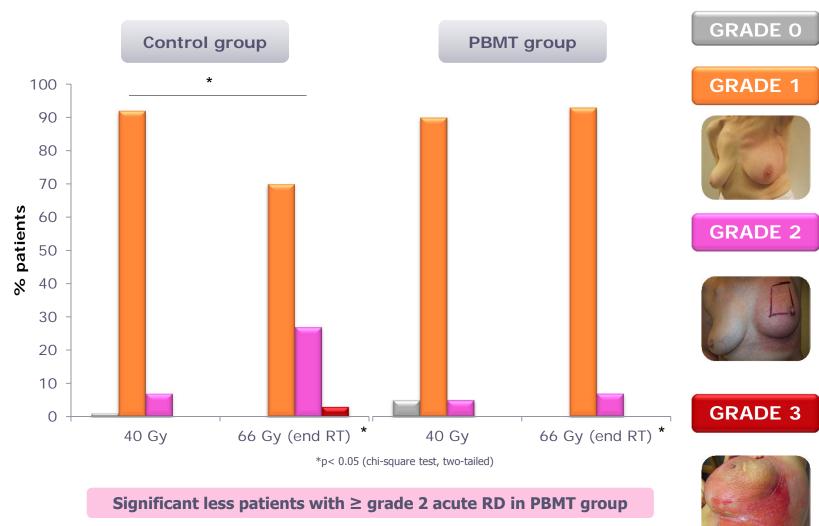
Study groups

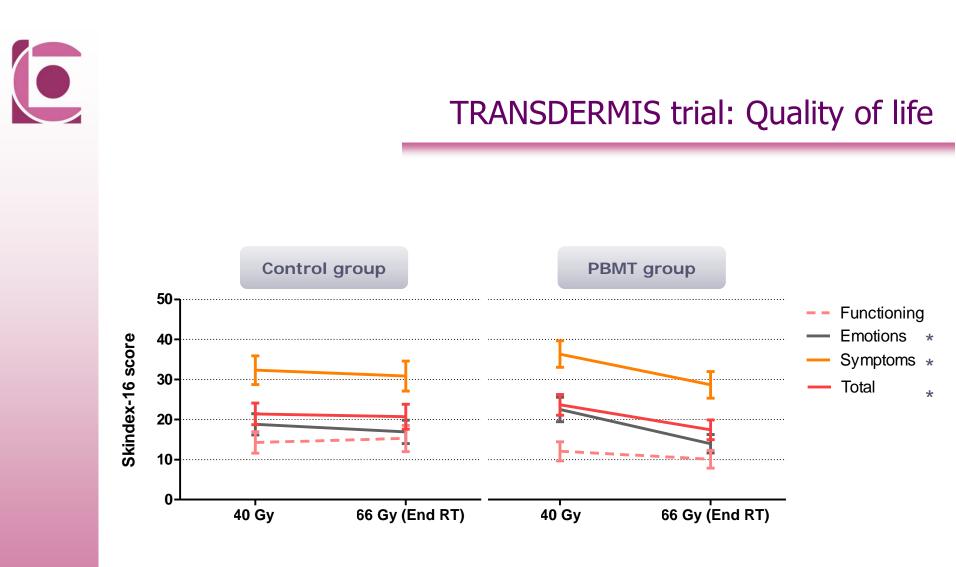
Randomisation based on breast volume (small, medium, large)

Control group	PBMT group
 60 patients Standard skin care Placebo laser from start RT	 60 patients Standard skin care PBMT from start RT
(2x/week, 14 sessions)	(2x/week, 14 sessions)

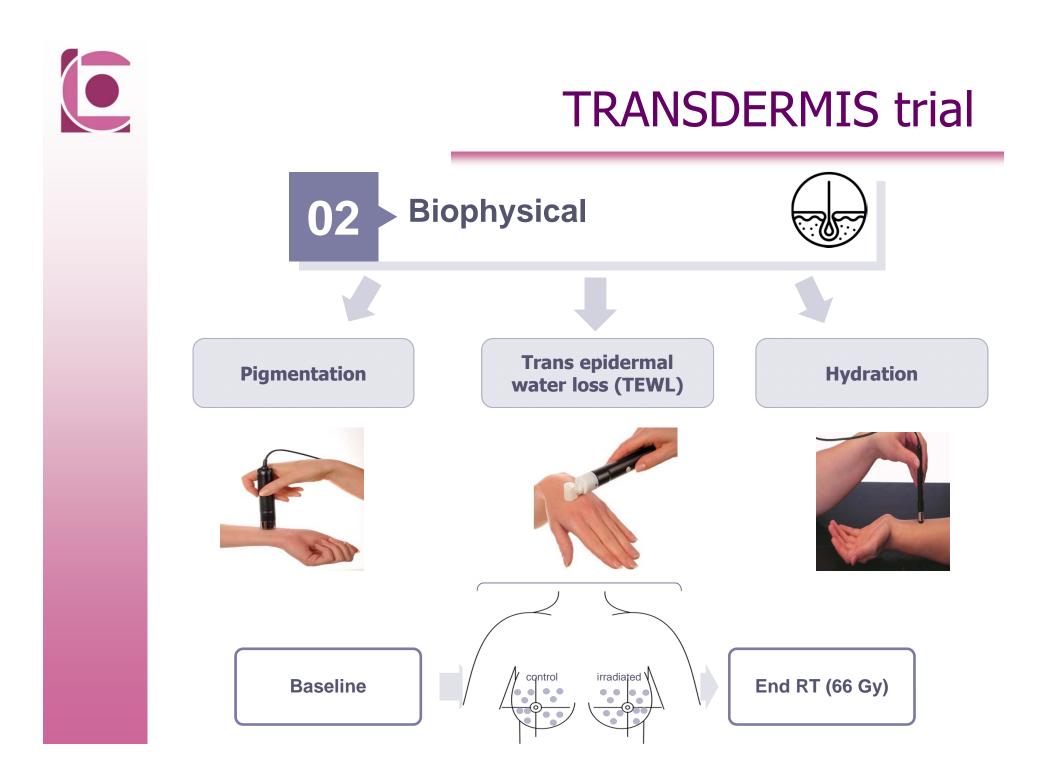

Patient characteristics		
Mean ageMean breast volume	65 y 25 cm ³	
Mean percentage chemotherapy patientsRT energy	74%	
• 6 MV • 6 + 15 MV	77% 23%	
 Type boost Photons Electrons 	50% 50%	

TRANSDERMIS trial

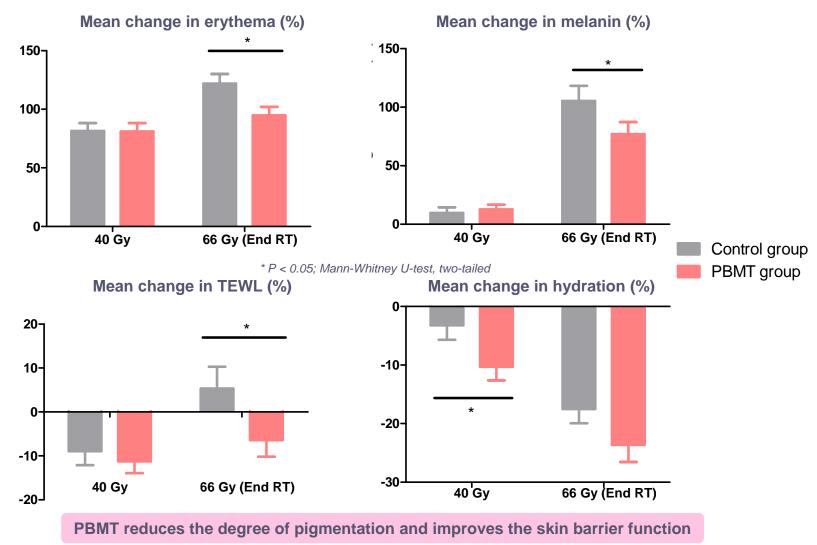



Robijns et al. Lasers Surg Med. 2018

TRANSDERMIS trial: Skin assessment



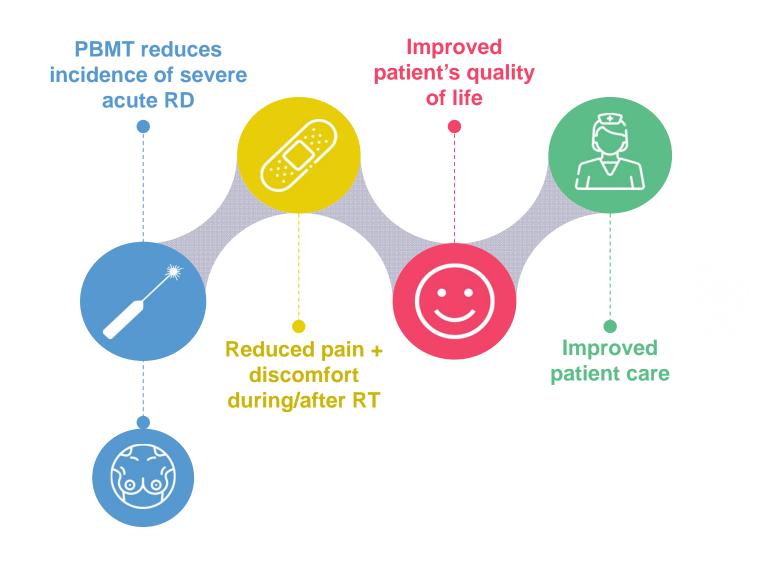
Robijns et al. Lasers Surg Med. 2018

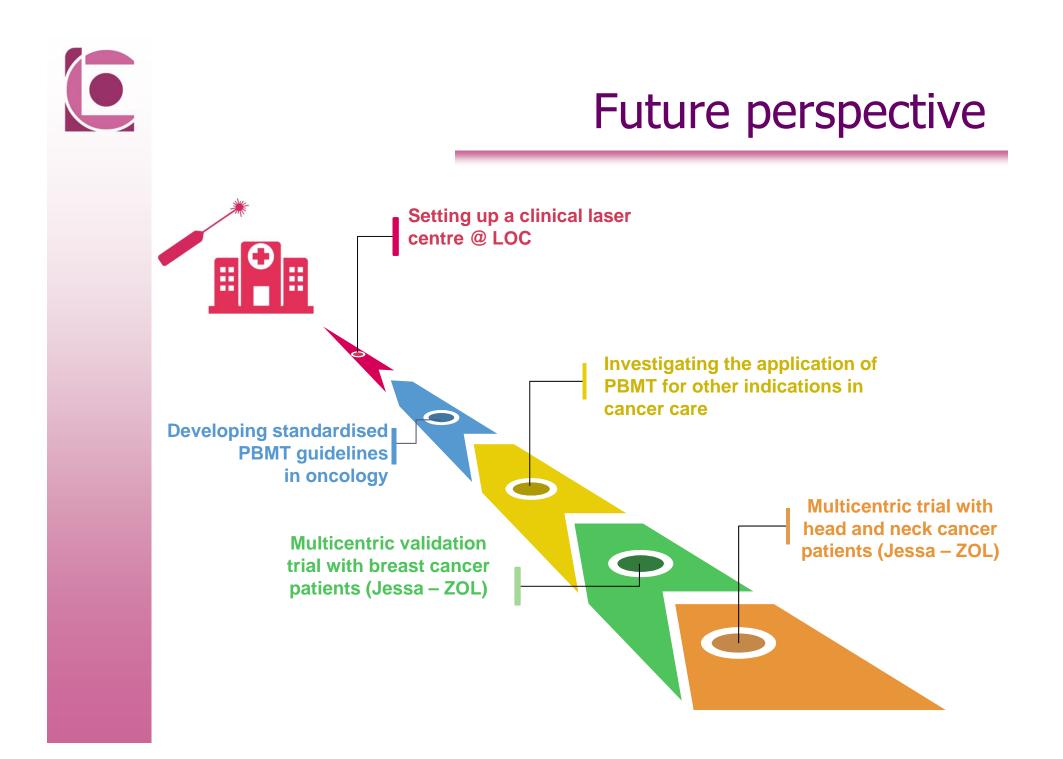

* Significant main time, group and interaction effect (group x time) p<0.05, 2X2 ANOVA

Significant increase in quality of life in PBMT group



TRANSDERMIS trial: biophysical measures




Robijns et al. Support Care Cancer. 2018

Conclusion part 2

Acknowledgments

►► UHASSELT	Prof. dr. Veerle Somers Prof. Dr. Ivo Lambrichts Prof. dr. Niels Hellings Joy Lodewijckx
LIMBURGS ONCOLOGISCH CENTRUM Y Z W	 Dr. Paul Bulens Dr. Annelies Maes Dr. Leen Noé Dr. Marc Brosens Dr. An Timmermans dr. Sandrine Censabella Luc Pannekoeke Leen Van Bever Stefan Claes Hilde Lenders Sandra Bortels Ruth Hilkens

This research is part of the Limburg Clinical Research Program UHasselt-ZOL-Jessa, supported by:

