

Sarcomas

Christiane Jungels, MD

Institut Jules Bordet Brussels, Belgium

12th Belgian Symposium on the Integration of Molecular Biology Advances into Oncology Clinical Practice and Post-MASCC 23e Novembre 2018

Disclosures

Travel expenses : Pharmamar, Bayer, Pfizer

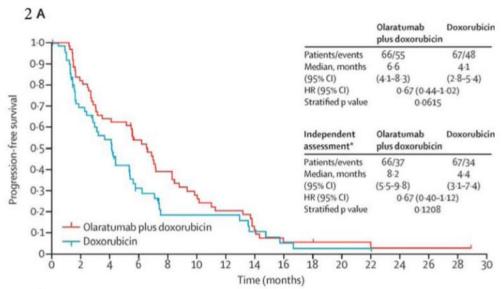
Summary

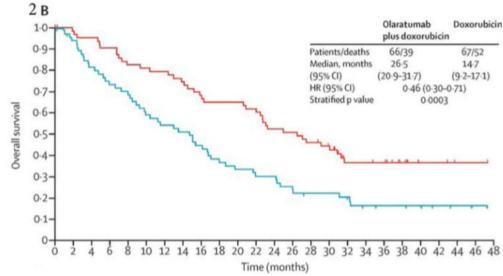
Introduction

- What's new in 2018 in sarcoma management
- Future perspectives / promising molecules

Sarcoma

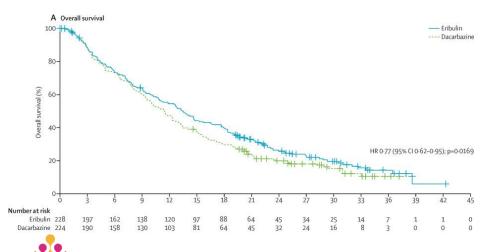
- Rare solid tumors; incidence 2-5/100.000/year
- Sub-groups
 - Soft tissue sarcoma
 - Bone sarcoma
 - GIST
- Diverse group of tumors originating from mesenchymal precursors
- ~ 1% of all adult malignancies


What's new in 2018 in sarcoma management



Olaratumab: reimbursement

- Phase 1b/2
- Recombinant human IgG1 monoclonal antibody that specifically binds PDGFRα
- Results of phase 3 trial avaiting!
- 34% of tumors were positive for PDGFRα
- The interaction effect between PDGFRα expression (positive or negative) and treatment was not significant for either overall or progression-free survival

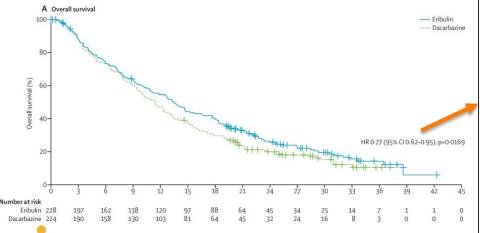

Eribulin: reimbursement

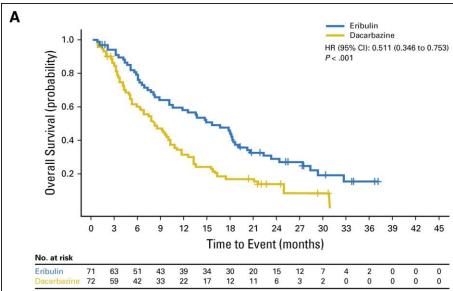
Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial

Intermediate-grade or high-grade advanced liposarcoma or leiomyosarcoma

JULES BORDET

At least two previous systemic regimens for advanced disease (including an anthracycline)




Eribulin: reimbursement

Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: a randomised, open-label, multicentre, phase 3 trial

Activity of Eribulin in Patients With Advanced Liposarcoma Demonstrated in a Subgroup Analysis From a Randomized Phase III Study of Eribulin Versus Dacarbazine

- Intermediate-grade or high-grade advanced liposarcoma or leiomyosarcoma

	Eve	nts/No.			Media	n (months)
Group/Subgroup	Eribulin	Dacarbazine		HR (95% CI)	Eribulin	Dacarbazin
Overall	176/228	181/224	ю	0.768 (0.618 to 0.954)	13.5	11.5
Histology			į			
Liposarcoma	52/71	63/72	⊷ ;	0.511 (0.346 to 0.753)	15.6	8.4
Dedifferentiated	21/31	31/34	 ∤	0.429 (0.232 to 0.792)	18.0	8.1
Myxoid/round cell	24/29	22/26		0.787 (0.416 to 1.491)	13.5	9.6
Pleomorphic	7/11	10/12		0.182 (0.039 to 0.850)	22.2	6.7
		0.062	5 0.25 1			
	Favors 6	eribulin 🔫	- →	Favors dacarba	azine	

New ESMO Guidelines

Annals of Oncology 29 (Supplement 4): iv51–iv67, 2018 doi:10.1093/annonc/mdy096 Published online 28 May 2018

Annals of Oncology 29 (Supplement 4): iv68-iv78, 2018 doi:10.1093/annonc/mdy095 Published online 28 May 2018

CLINICAL PRACTICE GUIDELINES

Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

P. G. Casali¹, N. Abecassis², S. Bauer³, R. Biagini⁴, S. Bielack⁵, S. Bonvalot⁶, I. Boukovinas⁷, J. V. M. G. Bovee⁸, T. Brodowicz⁹, J. M. Broto¹⁰, A. Buonadonna¹¹, E. De Álava¹⁰, A. P. Dei Tos¹², X. G. Del Muro¹³, P. Dileo¹⁴, M. Eriksson¹⁵, A. Fedenko¹⁶, V. Ferraresi¹⁷, A. Ferrari¹⁸, S. Ferrari¹⁹, A. M. Frezza¹, S. Gasperoni²⁰, H. Gelderblom²¹, T. Gil²², G. Grignani²³, A. Gronchi¹, R. L. Haas²⁴, A. Hannu²⁵, B. Hassan²⁶, P. Hohenberger²⁷, R. Issels²⁸, H. Joensuu²⁹, R. L. Jones³⁰, I. Judson³¹, P. Jutte³², S. Kaal³³, B. Kasper²⁷, K. Kopeckova³⁴, D. A. Krákorová³⁵, A. Le Cesne³⁶, I. Lugowska³⁷, O. Merimsky³⁸, M. Montemurro³⁹, M. A. Pantaleo⁴⁰, R. Piana⁴¹, P. Picci¹⁹, S. Piperno-Neumann⁶, A. L. Pousa⁴², P. Reichardt⁴³, M. H. Robinson⁴⁴, P. Rutkowski³⁷, A. A. Safwat⁴⁵, P. Schöffski⁴⁶, S. Sleijfer⁴⁷, S. Stacchiotti⁴⁸, K. Sundby Hall⁴⁹, M. Unk⁵⁰, F. Van Coevorden⁵¹, W. Van der Graaf⁵⁰, J. Whelan⁵², E. Wardelmann⁵³, O. Zaikova⁵⁴ & J. Y. Blay⁵⁵, on behalf of the ESMO Guidelines Committee and EURACAN*

CLINICAL PRACTICE GUIDELINES

Gastrointestinal stromal tumours: ESMO–EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

P. G. Casali¹, N. Abecassis², S. Bauer³, R. Biagini⁴, S. Bielack⁵, S. Bonvalot⁶, I. Boukovinas⁷, J. V. M. G. Bovee⁸, T. Brodowicz⁹, J. M. Broto¹⁰, A. Buonadonna¹¹, E. De Álava¹⁰, A. P. Dei Tos¹², X. G. Del Muro¹³, P. Dileo¹⁴, M. Eriksson¹⁵, A. Fedenko¹⁶, V. Ferraresi¹⁷, A. Ferrari¹⁸, S. Ferrari¹⁹, A. M. Frezza¹, S. Gasperoni²⁰, H. Gelderblom²¹, T. Gil²², G. Grignani²³, A. Gronchi¹, R. L. Haas²⁴, A. Hannu²⁵, B. Hassan²⁶, P. Hohenberger²⁷, R. Issels²⁸, H. Joensuu²⁹, R. L. Jones³⁰, I. Judson³¹, P. Jutte³², S. Kaal³³, B. Kasper²⁷, K. Kopeckova³⁴, D. A. Krákorová³⁵, A. Le Cesne³⁶, I. Lugowska³⁷, O. Merimsky³⁸, M. Montemurro³⁹, M. A. Pantaleo⁴⁰, R. Piana⁴¹, P. Picci¹⁹, S. Piperno-Neumann⁶, A. L. Pousa⁴², P. Reichardt⁴³, M. H. Robinson⁴⁴, P. Rutkowski³⁷, A. A. Safwat⁴⁵, P. Schöffski⁴⁶, S. Sleijfer⁴⁷, S. Stacchiotti⁴⁸, K. Sundby Hall⁴⁹, M. Unk⁵⁰, F. Van Coevorden⁵¹, W. Van der Graaf³⁰, J. Whelan⁵², E. Wardelmann⁵³, O. Zaikova⁵⁴ & J. Y. Blay⁵⁵, on behalf of the ESMO Guidelines Committee and EURACAN*

Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

P. G. Casali^{‡1}, S. Bielack^{‡2}, N. Abecassis³, H.T. Aro⁴, S. Bauer⁵, R. Biagini⁶, S. Bonvalot⁷, I. Boukovinas⁸, J. V. M. G. Bovee⁹, B. Brennan¹⁰, T. Brodowicz¹¹, J. M. Broto¹², L. Brugières¹³, A. Buonadonna¹⁴, E. De Álava¹⁵, A. P. Dei Tos¹⁶, X. G. Del Muro¹⁷, P. Dileo¹⁸, C. Dhooge¹⁹, M. Eriksson²⁰, F. Fagioli²¹, A. Fedenko²², V. Ferraresi⁶, A. Ferrari²³, S. Ferrari²⁴, A. M. Frezza²⁵, N. Gaspar¹³, S. Gasperoni²⁶, H. Gelderblom²⁷, T. Gil²⁸, G. Grignani²⁹, A. Gronchi¹, R. L. Haas³⁰, B. Hassan³¹, S. Hecker-Nolting⁷, P. Hohenberger³², R. Issels³³, H. Joensuu³⁴, R. L. Jones³⁵, I. Judson³⁶, P. Jutte³⁷, S. Kaal³⁸, L. Kager³⁹, B. Kasper³², K. Kopeckova⁴⁰, D. A. Krákorová⁴¹, R. Ladenstein³⁹, A. Le Cesne¹³, I. Lugowska⁴², O. Merimsky⁴³, M. Montemurro⁴⁴, B. Morland⁴⁵, M. A. Pantaleo⁴⁶, R. Piana²¹, P. Picci²⁴, S. Piperno-Neumann⁷, A. L. Pousa⁴⁷, P. Reichardt⁴⁸, M. H. Robinson⁴⁹, P. Rutkowski⁴², A. A. Safwat⁵⁰, P. Schöffski⁵¹, S. Sleijfer⁵², S. Stacchiotti²⁵, S. J. Strauss¹⁸, K. Sundby Hall⁵³, M. Unk⁵⁴, F. Van Coevorden⁵⁵, W.T.A. van der Graaf^{55,38,55}, J. Whelan¹⁸, E. Wardelmann⁵⁶, O. Zaikova⁵⁷ & J. Y. Blay⁵⁸, on behalf of the ESMO Guidelines Committee, PaedCan and ERN EURACAN⁸

Casali PG et al., *Annals of Oncology*, Volume 29, Issue Supplement_4, 1 October 2018, Pages iv51–iv67 Casali PG et al., *Annals of Oncology*, Volume 29, Issue Supplement_4, 1 October 2018, Pages iv68–iv78 Casali PG et al., *Annals of Oncology*, Volume 29, Issue Supplement 4, 1 October 2018, Pages iv79–iv95

Future perspectives Promising molecules

Immunotherapy and sarcomas

- Characteristics that may facilitate response to immunotherapy :
 - Inflammatory signature, PDL, TILS, mutational load?
- Few neo-antigens → few responses to CPI
- Expression of immunogenic proteins and antigens
 - Cancer-testis antigen family
 (NY-ESO-1, MAGE-A3, PRAME, LAGE-1)
 - Gangliosides (GM2, GD2, GD3)
 - Sarcoma Specific Fusion Proteins (SSX, FOXO1, EWSR1, TLS CHOP)
 - Heat shock proteins
- Limitations : rare and heterogeneous tumors

Table 2 Reported PD-L1 expression in some sarcoma

Sarcoma subtype	Positive cases (%)
Angiosarcoma	50–80
Chondrosarcoma	41–75
Ewing sarcoma	29–67
Leiomyosarcoma	32-70
Malignant peripheral nerve sheath tumor	17–67
Osteosarcoma	28–57
Rhabdomyosarcoma	38-63
Synovial sarcoma	25–75
Dedifferentiated liposarcoma	67–82
Gastrointestinal stromal tumor	29

Durvalumab plus tremelimumab shows modest activity for advanced sarcoma

- 46 patients
- 5 PR:
 - . 1 UPS (25%)
 - 1 angiosarcoma (20%)
 - 3 alveolar soft par sarcoma (50%)
- Disease control rate alveolar soft part sarcoma: 83%
- OS 14.5 mois, PFS 4.1 mois

Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, noncomparative, randomised, phase 2 trials

Confirmed responses:

2 (5%) des 38 patients du groupe nivolumab

6 (16%) des 38 patients du groupe nivolumab plus ipilimumab

New ASPS Clinical Trial: Axitinib and Pembrolizumab in Subjects With Advanced Alveolar Soft Part Sarcoma and Other Soft Tissue Sarcomas

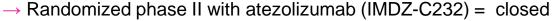
	Best overall response, N (%)
All patients (N=29)	PR 5 (17) SD 9 (31) PD 15 (52)
ASPS (N=9)	PR 4 (44) SD 3 (33) PD 2 (22)
Non-ASPS (N=20)	PR 1 (5) SD 6 (30) PD 13 (65)

PHASE II STUDY OF ATEZOLIZUMAB IN PATIENTS WITH ALVEOLAR SOFT PART SARCOMA

18 pts: PRs was observed in 7/18 pts (39%) with 5/7 pts (28%) having a confirmed PR

Immune response, safety, and survival impact from CMB305 in NY-ESO-1+ recurrent soft tissue sarcomas (C131 study)

· LV305 Priming:


- Dendritic cell (DC) targeting NY-ESO-1 lentiviral vector encoding full length NY-ESO-1
- Integration deficient, replication incompetent
- Induces and expands NY-ESO-1 specific CD8 and CD4 T Cells

G305 boosting:

- Potent TLR-4 agonist co-formulated with NY-ESO-1 full length protein
- Enhances LV305 immunogenicity and triggers anti-NY-ESO-1 antibodies

CMB305 is an active immunotherapy regimen designed to generate and expand anti-NY-ESO-1 T and B cells

	STS (N=25)	Synovial sarcoma (N=15)	Myxoid/round cell sacroma (N=8)
Overall response rate, N (%)	0	0	
Stable disease, N (%)	17 (68)	8 (57)	6 (75)
PFS, median months	3.9	3.7	
6-months PFS rate, %	33.3	30.8	
12-months PFS rate, %	20.8	23.1	
Median OS, months		23.7	29.2

→ Randomized phase III as maintenance after chemotherapy (IMDZ-04-1702) = stopped

Immunotherapy and sarcomas

- CPI monotherapy : deception
- Combinations and adoptive cellular therapy :
 - more promising
 - promising for certain types of sarcomas

A phase 2, multicenter study of the EZH2 inhibitor tazemetostat in adults (INI1-negative tumors cohort) (NCT02601950)

2018	EZMO
	and Ruff

Congress

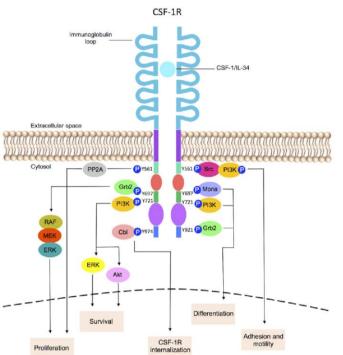
Endpoint Category, n (%)	Total N=32
ORR (CR + PR) 95% CI	3 (9) 2.0–25.0
Best response	
CR	0
PR	3 (9)
SD	13 (41)
PD	10 (31)
Non-evaluable, missing, or unknown	6 (19)

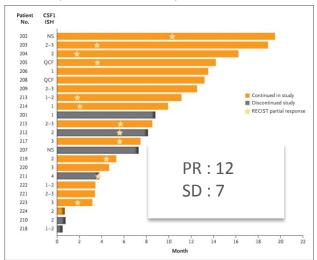
Sarcomas: 13

→ 2 of 2 spindle cell sarcomas

- Integrase interactor 1 (INI1) = SWI/ SNF subunit
- SWI/SNF = ATP-dependent chromatin remodeling complexe, restructuring the nucleosome to make its DNA accessible during transcription, replication and DNA repair
- INI1 loss can induce tumor dependence on enhancer of zeste homolog 2 (EZH2), a histone methyltransferase
- Tazemetostat = potent, selective, oral EZH2 inhibitor

A phase 2, multicenter study of the EZH2 inhibitor tazemetostat in adults: (epithelioid sarcoma cohort) (NCT02601950)


Endpoint Category, n (%)	No Prior Anticancer Therapy N=24	Prior Anticancer Therapy N=38	Total N=62
DCR [CR + PR + (SD≥32 weeks)]	9 (38)	6 (16)	15 (24)
ORR (CR + PR)	5 (21)	3 (8)	8 (13)
Best Response			
CR	0	0	0
PR	5 (21)	3 (8)	8 (13)
SD	16 (67)	20 (53)	36 (58)
PD	2 (8)	11 (29)	13 (21)
NE, missing, or unknown	1 (4)	4 (11)	5 (8)

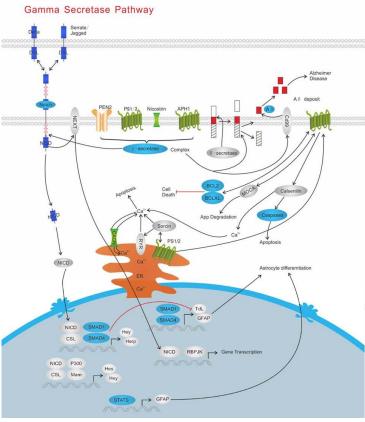

Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor

- Characterized by a proliferation of synoviocytes
- Marked by a disease specific fusion involving the colony-stimulating factor 1 receptor gene (CSF1R)

= pigmented villonodular synovitis/PVNS

- PLX3397 = Pexidartinib
 - potent, selective CSF1R inhibitor
- Phase I/II trial
 - . 41 pts in dose-escalation part → 1000mg/day
 - 23 pts in extension part

- Phase III trial (ENLIVEN study) vs placebo
 - . 120 pts \rightarrow ORR: 55.7%



Nirogacestat Gets Fast-Tracked for the Treatment of Desmoid Tumors

- Potent, selective, reversible, noncompetitive inhibitor of gamma-secretase (GS)
- Phase I: solid tumors + hematologic
 - Best tumor responses were 5 PRs of 7 evaluable patients with desmoid tumors
 - The 5 patients maintained response 48-73 months
- Phase II: desmoid tumors/aggressive fibromatosis
 - 17 patients received daily doses of nirogacestat at 150 mg
 BID continuously for 3 week cycles
 - . 16 patients were evaluable for response
 - 5 patients experienced confirmed PR
 - . 11 patients had stable disease
- Phase III: Nirogacestat vs placebo in progressing desmoid tumors/aggressive fibromatosis

ACTIVITY OF LAROTRECTINIB IN SARCOMA PATIENTS WITH TRK FUSION CANCER

- Tropomyosin receptor kinases (TRKs) are encoded by neurotrophic tyrosine receptor kinase genes (NTRKs)
- Aberrant genomic translocations involving NTRK genes have been shown to give rise to constitutively active, oncogenic TRK fusion proteins
- Larotrectinib is a potent and highly selective TRK inhibitor
- As of February 19 2018: 32 pts with TRK fusion sarcoma
 - 17 soft tissue sarcomas (STS)
 - 10 infantile fibrosarcoma (IFS)
 - 5 gastrointestinal stromal tumors (GIST)
- ORR 91% overall
 - . 88% in STS (15/17)
 - . 90% in IFS (9/10)
 - . 100% in pts with GIST (5/5)
 - . 6 CR
- 8 distinct NTRK gene fusions were detected, ETV6-NTRK3 fusion being the most common (11 pts)
- Other fusions identified included: TPM3-NTRK1,LMNA-NTRK1, LMNA-NTRK3, PDE4DIP-NTRK1, SQSTM1NTRK1, STRN-NTRK2, and TPM4-NTRK3

A PHASE II/III TRIAL OF HAFNIUM OXIDE NANOPARTICLES ACTIVATED BY RADIOTHERAPY IN THE TREATMENT OF LOCALLY ADVANCE SOFT TISSUE SARCOMA OF THE EXTREMITY AND TRUNK WALL

Radiotherapy alone

Interaction of Xray with water generates electrons

Interaction with Hafnium is higher and generates much more electrons killing cell more efficiently

NBTXR3 is a first in class radio-enhancer with a physical mode of action increasing the dose absorbed by 9x around clusters, triggering more cell damage*

- Primary endpoint : pCRR
 Main secondary endpoint : quality
 of surgery-R0 rate
- ◆ Grade 3-4 acute immune reactions in 7.9% of patients, manageable and of short duration
- ◆ RT safety profile similar in both arms, including postsurgical wound complications

Phase II/III randomized, multi-center, open-label and active controlled two arms study

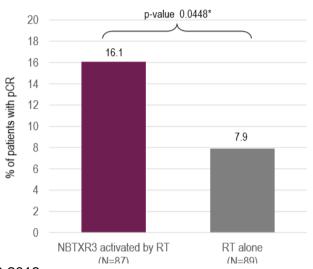
Soft Tissue sarcoma (STS) of the extremity and trunk wall

- Age ≥ 18 years-old
- Locally advanced soft tissue sarcoma, newly diagnosed or relapsed tumor
- · High-risk tumor
- Unresectable tumor or unfeasible carcinological surgical resection
- WHO score of 0 to 2

Arm A NBTXR3* activated by EBRT** Arm B EBRT** alone N=180 randomized §

32 sites in 11 countries in Europe and Asia

Primary endpoint:


 Pathological complete response rate# (pCRR) following EORTC Guidelines⁽¹⁾

Secondary endpoints:

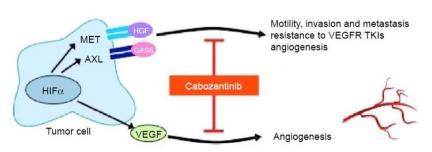
- Safety
- Carcinologic resection (surgical margin, R0, ...)
- Pathological Response (pR)
- Amputation rate

Stratification:

Myxoid liposarcoma / other

JULES BORDET
INSTITUUT

Bonvalot S, Proffered paper session, ESMO 2018


CABOZANTINIB IN PATIENTS WITH ADVANCED OSTEOSARCOMAS AND EWING SARCOMAS

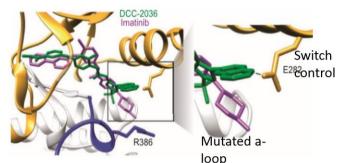
A French Sarcoma Group (FSG)/ US National Cancer Institute phase II collaborative study.

- Cabozantinib : potent, orally bioavailable, multitargeted, small-molecule inhibitor of VEGFR-2, AXL, c-MET
- Aberrant angiogenesis
 - common feature of Ewing and osteosarcomas
- MET overexpression
 - frequent
 - associated with adverse outcome

Approved for

- > RCC
- > MTC

Cabozantinib has demonstrated the highest antitumor activity ever observed in single-arm studies including osteosarcoma and Ewing's sarcoma patients with heavily pre-treated advanced disease

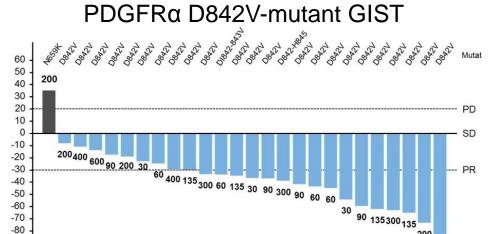

	Osteosarcomas (n=41)	Ewing's sarcomas (n=32)
Tumor burden reduction ate	41%	71%
Objective response rate	11.9%	28.1%
Median PFS (months)	6.2	5.2
Median OS (months)	10.6	9.8

Initial Results of Phase 1 Study of DCC-2618, a Broad-spectrum KIT and PDGFR α Inhibitor, in Patients (pts) with Gastrointestinal Stromal Tumor (GIST) by Number of Prior Regimens.

- Secondary resistance to first-line imatinib
 - eventually develops over the course of treatment in about 80% of responding patients
 - mostly due to KIT exon 13, 17 and 18 mutations

loop
DCC-2618 is a Type II switch control kinase inhibitor
- Acts in a ATP-noncompetitive manner.

DCC-2618 Results Provided Encouraging Efficacy across all Lines of Treatment > 100 mg/d (n=178)


Line of Therapy	Objective Response Rate ^[1]	Disease Control Rate @ 3 Months	Median Progression Free Survival (mPFS)	Censored Patients for mPFS	Median Treatment Duration ^[4]
2 nd Line (n=38)	18% ^[2] (7/38)	79%	42 weeks (24, NE)	58%	48 weeks (31, NE)
3 rd Line (n=29)	24 % (7/29)	83%	40 weeks (24, NE)	52%	NR (36, NE)
≥4 th Line (n=111)	9% (10/106) ^[3]	66%	24 weeks (16, 30)	35%	28 weeks (22, 47)
2nd & 3rd Line (n=67)	21 % ⁽²⁾ (14/67)	81%	40 weeks (24, NE)	55%	52 weeks (36, NE)

Clinical activity of BLU-285 in advanced gastrointestinal stromal tumor (GIST)

ASCO ANNUAL MEETING '17

exon 14 D842

*per archival tumor and ctDNA

JULES BORDET

PDGFRα D842V-mutant GIST

Best response (N=25)	Choi Criteria n (%)	RECIST1.1 n (%)
PR	25 (100%)	15* (60%)
SD	0	10 (40%)
DCR (PR + SD)	25 (100%)	25 (100%)
PD	0	0

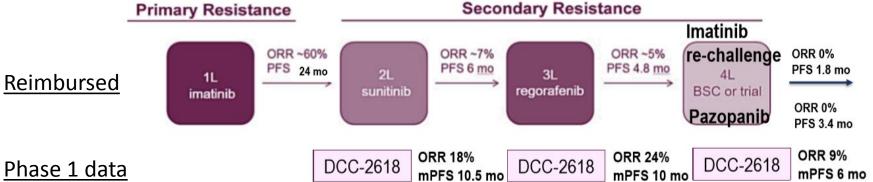
PDGFRα D842V-mutant GIST Median PFS not reached PFS 25th percentile 11.2 months (95% CI: 5.9 – NE) Approved agents are ineffective 1.2 mPFS ~3 months DGFR 31 26 21 17 14 8 4 2 1 1 0 0 0 2 4 6 8 10 12 14 16 18 20

Heavily pre-treated KIT-mutant GIST

Best response (N=25)	Choi Criteria n (%)	RECIST1.1 n (%)
PR	8 (32)	2* (8)
SD	6 (24)	12 (48)
DCR (PR + SD)	14 (56)	14 (56)
PD	11 (44)	11 (44)

400

New agents in clinical trials beat the treatment paradigm in GIST


ORR 8%

(Choi 32%)

mPFS 9.3 mo

Avapritinib

(BLU-285)

Phase III trials

Study name	Study drug	Planned size; Randomization	Eligibility	Study number
INVICTUS	DCC2618 vs Placebo	120; 2:1	≥4 th line GIST	NCT03353753
INTRIGUE	DCC2618 vs Sunitinib	358;1:1	2 nd line GIST	NCT03673501
VOYAGER	AVAPRITINIB vs Regorafenib	460; 1:1	3 nd and 4 th line GIST	NCT03465722
CRENOGIST	CRENOLANIB vs Placebo	120; 2:1	D842V Mutated PDGFRA Gene	NCT02847429

Conclusions I

- New reimbursements
 - Olaratumab : STS, in combination with Doxorubicin (1st line)
 - Eribulin : liposarcoma, ≥ 2d line

Conclusions II

Promising molecules

- . CPI in combination?
- CMB305 : NY-ESO-1+ STS / SS
- Tazemetostat : INI1- tumors, epithelioid sarcoma
- Pexidartinib : PVNS
- Nirogacestat : desmoid
- Larotrectinib : sarcoma with TRK fusion
- Nanoparticles in combination with RT : locally advanced STS
- Cabozantinib : bone sarcomas
- DCC-2618 : GIST
- BLU-285 : GIST

Conclusions II

- Promising molecules
 - CPI in combination?
 - CMB305: NY-ESO-1+ STS / SS
 - Tazemetostat: INI1- tumors, epithelioid sarcoma
 - Pexidartinib: PVNS
 - Nirogacestat : desmoid
 - Larotrectinib: sarcoma with TRK fusion
 - Nanoparticles in combination with RT : locate
 - Cabozantinib: bone sarcomas
 - DCC-2618 : GIST
 - **BLU-285** : **GIST**

Thank you for your attention

